
Maps for Learning Indexable Classes
Julian Berger1

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

Maximilian Böther1

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

Vanja Doskoč2

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

Jonathan Gadea Harder1

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

Nicolas Klodt1

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

Timo Kötzing2

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

Winfried Lötzsch1

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

Jannik Peters1

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

Leon Schiller1

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

Lars Seifert1

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

Armin Wells1

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

Simon Wietheger1

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

Abstract
We study learning of indexed families from positive data where a learner can freely choose a hypothesis space
(with uniformly decidable membership) comprising at least the languages to be learned. This abstracts a very
universal learning task which can be found in many areas, for example learning of (subsets of) regular languages
or learning of natural languages. We are interested in various restrictions on learning, such as consistency,
conservativeness or set-drivenness, exemplifying various natural learning restrictions.

Building on previous results from the literature, we provide several maps (depictions of all pairwise relations)
of various groups of learning criteria, including a map for monotonicity restrictions and similar criteria and
a map for restrictions on data presentation. Furthermore, we consider, for various learning criteria, whether
learners can be assumed consistent.

2012 ACM Subject Classification Theory of computation → Computability

Keywords and phrases inductive inference, language learning in the limit, indexed family, hypothesis space,
delayable restrictions, data presentation, map, characteristic index

Acknowledgements This work was supported by DFG Grant Number KO 4635/1-1.

1 firstname.lastname@student.hpi.uni-potsdam.de, with “ö” as “oe” and double surnames written without space.
2 firstname.lastname@hpi.de, with “č” as “c” and “ö” as “oe”.

ar
X

iv
:2

01
0.

09
46

0v
1

 [
cs

.L
G

]
 1

5
O

ct
 2

02
0

2 Maps for Learning Indexable Classes

1 Introduction

We are interested in the problem of algorithmically learning a description for a formal language (a
computably enumerable subset of the set of all natural numbers) when presented successively all
and only the elements of that language; this is called inductive inference, a branch of (algorithmic)
learning theory. For example, a learner h might be presented more and more even numbers. After
each new number, h outputs a description for a language as its conjecture. The learner h might decide
to output a program for the set of all multiples of 4, as long as all numbers presented are divisible
by 4. Later, when h sees an even number not divisible by 4, it might change this guess to a program
for the set of all multiples of 2.

Many criteria for determining whether a learner h is successful on a language L have been
proposed in the literature. Gold, in his seminal paper [13], gave a first, simple learning criterion,
TxtGEx-learning3, where a learner is successful if and only if, on every text for L (listing of all
and only the elements of L) it eventually stops changing its conjectures, and its final conjecture is
a correct description for the input language. Trivially, each single, describable language L has a
suitable constant function as a TxtGEx-learner (this learner constantly outputs a description for
L). Thus, we are interested in analyzing for which classes of languages L is there a single learner h
learning each member of L. This framework is also known as language learning in the limit and has
been studied extensively, using a wide range of learning criteria similar to TxtGEx-learning (see,
for example, the textbook [14]).

A major branch of this analysis focuses on learning indexed families, that is, classes of languagesL
such that there is an enumeration (Li)i∈N of all and only the elements of L for which the decision
problem “x ∈ Li” is decidable. Already for such classes of languages we get a rich structure. A
survey of previous work in this area can be found in [25]. We are specifically interested in class
comprising learning, that is, our learners are free to choose any hypothesis space which contains
hypotheses at least for the languages to be learned. This is in contrast, for example, to learning with a
concretely given hypothesis space.

Since the appearance of the mentioned survey, only little work on indexable classes was conducted,
while learning of arbitrary families of languages sprouted a new mode of analysis, map charting. This
approach tries to further the understanding of learning settings by looking at all pairwise relations of
similar learning criteria and displaying them as a map [18, 19]. This approach builds on the pairwise
relations which are already known in the literature and completes them in interesting settings to
understand one aspect more closely, for example regarding certain natural restrictions on what kind of
mind changes are allowed (which we will consider in Section 5) or the importance of data presentation
(which we will consider in Section 6).

We start our analysis by considering the restriction of consistent learning [1]. A learner is
consistent if and only if each of its hypotheses correctly reflects the data which the hypothesis is based
on. Note that, for arbitrary learning in the Gold-style model, learners cannot be assumed consistent in
general [3], a result termed the inconsistency phenomenon. The reason behind this result is essentially
the same as for the halting problem: a general hypothesis cannot be checked for consistency in a
computable way. Since, for indexed families, consistency of hypotheses is decidable, it comes at no
surprise that here learners can, in general, be assumed consistent [33]. However, to prove this result,
crucial changes to the hypotheses are made (so as to make them consistent), which might spoil other
nice properties the learner might exhibit (such as never overgeneralizing the true target language).
In Section 4 we show several different ways in which total learners can be made consistent, each

3 Txt stands for learning from a text of positive examples; G stands for Gold-style learning and indicates that the
learner has full information on the data given; Ex stands for explanatory.

Berger et al. 3

maintaining other restrictions (such as, for example, conservative learning [1], where learners must
not change their mind while still consistent).

In Section 5 we consider one of the best-studied maps from other learning settings, the map of
delayable learning restrictions. We build on previously known results, such as that conservative
learning is restrictive [22], and complete the map both for the case of full information (where the
learner has access to the full history of data shown) and for set-driven learners (which only have
access to the set of data presented so far, but not to the order of presentation [30]). This builds on
earlier analyses of monotone learning which has been studied in various settings [24]. We depict our
results in Figure 1. In particular, we show that the criteria cluster into merely five different learning
powers, i.e., many learning criteria allow for learning the same classes of languages. Among other
things, we show that (strong) non-U-shaped learning [2, 9], where abandoning a correct hypothesis is
forbidden, is not restrictive in either setting (set-driven and full-information).

Figure 1 Relation of G- and Sd-learners under various additional restrictions, see Section 2.1 for a full list
thereof. The solid lines imply (proper) inclusions (bottom-to-top) and the greyly edged areas illustrate a collapse
of the enclosed learning criteria.

In Section 6 we consider in more detail what impact the access to information has on the
learning power of total learners. Additionally to full information and set-driven learning, we also
consider iterative learning (where the learner has access to its previous hypothesis, but only the current
datum [30]). We give the complete map for Ex-learning at the same time as Bc-learning (behaviorally
correct learning, where the learner need not to stop syntactically changing the conjecture, so long as
it remains semantically correct [8, 27]). We depict our findings in Figure 2.

These directions taken together (consistency, delayable restrictions, information access, syntactic
vs. semantic convergence) give a well-rounded picture, offering a glimpse on learning indexable
classes from all commonly studied angles.

In order to prove our results, we develop a very useful characterization of learning indexable
families given in Theorem 1. Here we show that learnability as an indexed family with an arbitrary
hypothesis space is equivalent to learnability by a learner which only outputs programs for character-
istic functions and is considered successful when converging to such a program which decides the
target language. This result allows us to simplify many of our proofs (and it also made finding proofs
easier), since now the hypothesis space does not need to be chosen in advance.

We continue this paper with a section on mathematical preliminaries (Section 2), including some
relevant results from the literature, before getting to the technical part.

4 Maps for Learning Indexable Classes

Figure 2 Relation of syntactic and semantic convergence when learning indexable classes with total learners
under various memory restrictions β. Black solid lines imply trivial inclusions (bottom-to-top, left-to-right). The
dashed line depicts the non-trivial proper inclusion [RTxtItEx]ind ([RTxtSdEx]ind. Furthermore, greyly
edged areas illustrate a collapse of the enclosed learning criteria and there are no further collapses.

2 Preliminaries

In this section we introduce the mathematical notations and notions used throughout the paper. For
unintroduced notation we refer to [28]. Regarding the learning criteria, we follow the system of [21].

2.1 Language Learning in the Limit

We denote the set of natural numbers by N = {0, 1, 2, . . .}. With ⊆ and (we denote the subset and
proper subset relation between sets, respectively. Furthermore, with ⊆FIN we denote finite subsets.
With ∩,∪, \ we denote the set intersection, union, and difference, respectively. We let ∅ and ε denote
the empty set and empty sequence, respectively. We use P (R) as the set of all (total) computable
functions. If a function f is defined on an argument x we denote this by f(x)↓; otherwise, we write
f(x)↑. We fix an effective numbering (ϕe)e∈N of P , where e may be viewed as a program or index
for the function ϕe.

We fix the symbol # called pause. For any set S ⊆ N, we denote S# := S ∪ {#}. The set of all
sequences of length t ∈ N over S# is denoted by S≤t# and the set of all finite sequences over N∪{#}
by Seq. For two sequences σ, τ , we let σ_τ denote their concatenation and we write σ ⊆ τ if and
only if σ is a prefix of τ . For a (possibly infinite) sequence σ, we let content(σ) = (range(σ)\{#}).
For σ ∈ Seq, we denote the sequence with the last element removed as σ−. Furthermore, we may
interpret finite sequences as natural numbers and fix a total order ≤ on these such that, in particular,
for all σ, τ ∈ Seq with σ ⊆ τ we have that σ ≤ τ .

We call a computably enumerable set L ⊆ N a language. We learn indexed families of languages,
that is, families of languages (Li)i∈N where there exists a total computable function f such that, for
all i, x ∈ N,

f(i, x) =
{

1, if x ∈ Li;
0, otherwise.

We learn these families with respect to hypothesis spaces, which are indexed families of languages
themselves. In general, a learner is a function h ∈ P . We examine learning from text. A text is a total
function T : N→ N∪{#}. We denote the set of all texts as Txt. Furthermore, we call T a text for a

Berger et al. 5

language L if content(T) = L; the set of all texts for L is denoted by Txt(L). The canonical text of
a language L is the enumeration of all elements in L in strictly ascending order (if L is finite, the text
returns # after all elements have been presented). Analogously, the canonical sequence of a (finite)
language L is the (finite) sequence of all elements in L in strictly ascending order. Additionally, we
define T [0] = ε and, for all n ∈ N with n > 0, T [n] = T (0), . . . , T (n− 1).

What kind of information a learner is given, is specified by an interaction operator. Formally,
an interaction operator is a function that takes a learner and a text as input arguments and outputs a
(possibly partial) function that is called learning sequence or sequence of hypotheses. We consider
Gold-style or full-information learning [13], denoted by G, iterative learning (It, [11, 31]), partially
set-driven or rearrangement-independent learning (Psd, [4, 29]), set-driven learning (Sd, [30]) and
transductive learning (Td, [6, 21]). Note that transductive learners may output a special symbol “?”
if the information given is not sufficient to make a guess. Formally, for all learners h ∈ P , texts
T ∈ Txt and i ∈ N,

G(h, T)(i) = h(T [i]);
Psd(h, T)(i) = h(content(T [i]), i);

Sd(h, T)(i) = h(content(T [i]));

It(h, T)(i) =
{
h(ε), if i = 0;
h(It(h, T)(i− 1), T (i− 1)), otherwise;

Td(h, T)(i) =


?, if i = 0;
Td(h, T)(i− 1), else, if h(T (i− 1)) = ?;
h(T (i− 1)), otherwise.

Intuitively, Gold-style learners have full information on the elements given. Set-driven learners base
their hypotheses solely on the content of the information given, while partially set-driven learners
additionally have a counter for the iteration step. Iterative learners base their conjectures on their
previous hypothesis and the current datum. Lastly, transductive learners solely base their guesses on
the current datum and may output “?” if the information is not sufficient.

For two interaction operators β, β′ we write β � β′ if and only if every β-learner h can be
compiled into an equivalent β′-learner h′ such that, for any text T , we have β(h, T) = β′(h′, T). We
note that Td � It � G and Sd � Psd � G. As an example, every Sd-learner can be compiled
into an Psd-learner by simply ignoring the counter. Furthermore, note that any Td-learner may be
simulated by a Sd-learner, however, the order of the hypotheses may be changed. For any β-learner
h with β � G, we let h∗, the starred learner, denote the G-learner simulating h. For example, the
starred learner of a Psd-learner h is defined, for all sequences σ, as h∗(σ) = h(content(σ), |σ|).

For a learner to successfully identify a language it has to satisfy certain restrictions. A famous
example was given by Gold, who required the learner to converge to a correct hypothesis for the
target language [13]. This is called explanatory learning and denoted by Ex. When we speak of
correct hypotheses, it is with regard to an indexed hypothesis space. Formally, a learning restriction is
a predicate on a sequence of hypotheses p and a text T ∈ Txt. In the case of explanatory learning,
we get, for a given indexed hypothesis spaceH = (Hi)i∈N,

Ex(p, T)⇔ ∃n0∀n ≥ n0 : p(n) = p(n0) ∧Hp(n0) = content(T).

We now give the intuition for the considered restrictions and define them formally afterwards. As an
alternative to Ex, for behaviorally-correct (Bc) learning one only requires semantic convergence,
that is, after some point all hypotheses must be correct hypotheses for the target language, but they do
not need to be syntactically equal [8, 27].

6 Maps for Learning Indexable Classes

In addition to these convergence criteria there are various other properties that are natural to
require from a learner. In non-U-shaped learning (NU, [2]), once the learner outputs a correct
hypothesis, it may not unlearn the language, i.e., it may only make syntactic mind changes. In
strongly non-U-shaped learning (SNU, [9]) not even these syntactic mind changes are allowed.
In consistent learning (Cons, [1]), each hypothesis must include the given information. There
exist various monotonicity restrictions ([15, 32, 23]). When learning strongly monotone (SMon),
the learner may not discard elements present in previous hypotheses, and in monotone learning
(Mon) the learner is not allowed to remove correct data from its hypotheses. Furthermore, in weakly
monotone learning (WMon) the learner must remain strongly monotone while consistent with the
input. Similarly, in cautious learning (Caut, [26]), no hypothesis may be a proper subset of a prior
hypothesis. As a relaxation, in target-cautious learning (CautTar, [18]), no hypothesis may be a
proper superset of the target language. A specialization of cautious and weakly monotone learning is
witness-based learning (Wb, [19]), where each mind change must be justified by a witness. Witness-
based learning is also a specialization of conservative learning (Conv, [1]) where the learner may
only make a mind change when an inconsistency is detected. If we only require this for semantic
mind changes, we call the learner semantically conservative (SemConv, [20]). Finally, in decisive
learning (Dec, [26]), the learner may not return to semantically abandoned hypotheses; in strongly
decisive learning (SDec, [17]), the learner may not return to syntactically abandoned hypotheses.
Now, we give formal definitions for theses restrictions. LetH = (Hi)i∈N be an indexed hypothesis
space. For any sequence of hypotheses p and text T ∈ Txt, we have

Bc(p, T)⇔ ∃n0 : ∀n ≥ n0 : Hp(n) = content(T);
NU(p, T)⇔ ∀i, j, k : i ≤ j ≤ k ∧Hp(i) = Hp(k) = content(T)⇒ Hp(i) = Hp(j);

SNU(p, T)⇔ ∀i, j, k : i ≤ j ≤ k ∧Hp(i) = Hp(k) = content(T)⇒ p(i) = p(j);
Cons(p, T)⇔ ∀i : content(T [i]) ⊆ Hp(i);

SMon(p, T)⇔ ∀i, j : i < j ⇒ Hp(i) ⊆ Hp(j);
Mon(p, T)⇔ ∀i, j : i < j ⇒ content(T) ∩Hp(i) ⊆ content(T) ∩Hp(j);

WMon(p, T)⇔ ∀i, j : i < j ∧ content(T [j]) ⊆ Hp(i) ⇒ Hp(i) ⊆ Hp(j);
Caut(p, T)⇔ ∀i, j : Hp(i) (Hp(j) ⇒ i ≤ j;

CautTar(p, T)⇔ ∀i : ¬(content(T) (Hp(i));
Wb(p, T)⇔ ∀i, j : (∃k : i < k ≤ j ∧ p(i) 6= p(k))⇒

⇒
(
content(T [j]) ∩Hp(j)

)
\Hp(i) 6= ∅;

Conv(p, T)⇔ ∀i : content(T [i+ 1]) ⊆ Hp(i) ⇒ p(i) = p(i+ 1);
SemConv(p, T)⇔ ∀i : content(T [i+ 1]) ⊆ Hp(i) ⇒ Hp(i) = Hp(i+1);

Dec(p, T)⇔ ∀i, j, k : i ≤ j ≤ k ∧Hp(i) = Hp(k) ⇒ Hp(i) = Hp(j);
SDec(p, T)⇔ ∀i, j, k : i ≤ j ≤ k ∧Hp(i) = Hp(k) ⇒ p(i) = p(j).

We combine any two learning restrictions δ and δ′ by intersecting them, which is denoted by their
juxtaposition. With T we define the learning restriction which is always true and interpret it as
absence of a learning restriction.

Now, a learning criterion is a tuple (α, C, β, δ), where α and δ are learning restrictions, C is the
set of admissible learner, usually P or R, and β is an interaction operator. We write τ(α)CTxtβδ
to denote the learning criterion and omit C if it equals P , and a learning restriction if it equals
T. Let h ∈ C be an admissible learner. We say that h τ(α)CTxtβδ-learns a language L with
respect to some hypothesis space H if and only if, for all texts T ∈ Txt, we have α(β(h, T), T)
and, for all T ∈ Txt(L), δ(β(h, T), T). The set of languages τ(α)CTxtβδ-learned by h with

Berger et al. 7

respect to some hypothesis spaceH is denoted by τ(α)CTxtβδ(h). The set of all indexable families
τ(α)CTxtβδ-learned by an admissible learner with respect to some indexed hypothesis space is
denoted by [τ(α)CTxtβδ]ind, the so-called learning power of τ(α)CTxtβδ-learners.

2.2 Normals Forms

To proof certain statements on learner, there are properties that come in handy. For example, except
for Cons, all considered learning restrictions are delayable. Intuitively, a learning restriction is
delayable if it allows for arbitrary, but finite postponing of hypotheses [18]. Formally, a learning
restriction is delayable if and only if for all sequences of hypotheses p, texts T, T ′ ∈ Txt with
content(T) = content(T ′) and non-decreasing, unbounded functions r : N→ N, if we have δ(p, T)
and, for all n ∈ N, content(T [r(n)]) ⊆ content(T ′[n]), then also δ(p ◦ r, T ′) holds.

A common property of the considered learning restrictions is that they solely depend on the
semantic of the hypotheses and on the position of mind changes. This property is formalized in the
notion of pseudo-semantic learning restrictions [20]. A learning restriction δ is pseudo-semantic
if and only if for all learning sequences p and texts T ∈ T, if δ(p, T) and for a learning sequence
p′, with, for all n ∈ N, p(n) and p′(n) are semantically equivalent and p(n) = p(n + 1) implies
p′(n) = p′(n+ 1), then δ(p′, T). All considered learning restrictions are pseudo-semantic.

We regularly make use of locking sequences. These are sequences that contain enough information
such that a given learner, after seeing this sequence, suggests a correct hypothesis for the target lan-
guage and does not change its mind whatever data from the target language it is given. Formally, let h
be a G-learner andH = (Hi)i∈N a hypothesis space. Then a sequence σ ∈ Seq is a locking sequence
for h on a language L, if, for all sequences τ ∈ L∗#, we have h(σ) = h(σ_τ) and Hh(σ_τ) = L [4].
For Bc-learners, we drop the first requirement and call σ a Bc-locking sequence [14]. This definition
can directly be expanded to learners with other interaction operators. Let h be such a learner and
consider its starred learner h∗. Then, a sequence σ is called a locking sequence for h on L if and
only if σ is a locking sequence for h∗ on L. We remark that, in the case of partially set-driven and
set-driven learners, we refer to locking sequences as locking information and locking set, respectively.
Note that, if a learner learns a language there always exists a (Bc-) locking sequence [4], but there
exist texts where no initial sequence thereof is a (Bc-) locking sequence. Given a learner h and a
language L it learns, if on any text T ∈ Txt(L) there exists an initial sequence thereof which is a
(Bc-) locking sequence for h on L, we call h strongly (Bc-) locking on L. If h is strongly (Bc-)
locking on every language it learns, we call h strongly (Bc-) locking [18].

3 Learning Indexed Families without Hypothesis Spaces

In this section we present a useful result on which we build our remaining results. When learning
indexed families with respect to (arbitrary) hypothesis spaces, the choice of the latter is crucial for
successful learning. However, it is often a non-trivial task to construct the fitting hypothesis space.
With Theorem 1, we show that one can forgo this necessity and, so to speak, obtain the hypothesis
space on the run.

We make use of so-called C-indices or characteristic indices. Intuitively, a C-index of a language
L is a program for its characteristic function. Formally, an index e is a C-index of the language L
if and only if ϕe ≡ χL. We also denote Ce = {x ∈ N | ϕe(x) = 1}. Note that if e is a C-index of
L then Ce = L. Now, we can request a learner to converge to a C-index instead of an index with
respect to some hypothesis space. Exemplary, when requiring syntactic convergence to a C-index we
write, for all sequences of hypotheses p and all texts T ,

ExC ⇔ ∃n0∀n ≥ n0 : p(n) = p(n0) ∧ Cp(n0) = content(T).

8 Maps for Learning Indexable Classes

Transitioning the other considered restrictions is immediate and, thus, omitted. For clarity, given a
learning criterion (α, C, β, δ), we write τ(α)CTxtβδC in case of learning C-indices. Analogously,
for example, we denote with [τ(α)CTxtβδC] the set of all classes τ(α)CTxtβδC -learnable by some
learner h.

In particular, we show that learners which output characteristic indices on any input may be
translated into total learners which learn with respect to a hypothesis space. To that end, we define the
restriction CInd, where the learner must output C-indices. Formally, for any hypothesis sequence p
and any text T , we have

CInd(p, T)⇔ ∀i, x : ϕp(i)(x)↓ ∧ ϕp(i)(x) ∈ {0, 1} .

We show the equality of the two learning approaches. While the output of h′ can easily be interpreted
as a characteristic index, for the other direction, one considers all hypotheses output by the τ(CInd)-
learner, that is, the learner which outputs C-indices on any input, as hypothesis space. Then, it
remains to choose the right (minimal) index of this hypothesis space to maintain successful learning.
We provide the rigorous proof.

I Theorem 1. Let α, δ be pseudo-semantic restrictions, let β � G be an interaction operator and
let L be an indexed family. Then, L is in [τ(CIndα)TxtβδC] if and only if there exist a total learner
h′ and a hypothesis spaceH such that h′ τ(α)Txtβδ-learns L with respect toH.

Proof. For the first direction, let L ∈ [τ(CIndα)TxtβδC] be an indexed family learned by a
τ(CIndα)TxtβδC-learner h. Let h∗ be the starred form of h, that is, the G-learner simulating h.
As h is τ(CInd), so is h∗ and we can define the indexed hypothesis spaceH = (Ch∗(σ))σ∈Seq. As
h learns L, we have L ⊆ H. Fix an order ≤ on the set of all finite sequences. Then, we define the
learner h′, for notational convenience in its starred form, as, for any finite sequence σ,

(h′)∗(σ) = min
≤
{σ′ ∈ Seq | h∗(σ′) = h∗(σ)}.

Note that the min-search terminates as σ is a candidate thereof. Now, for two sequences σ and τ , we
have h∗(σ) = h∗(τ) if and only if (h′)∗(σ) = (h′)∗(τ). Also, h∗(σ) and (h′)∗(σ) are semantically
equivalent. Thus, h′ τ(α)Txtβδ-learns L with respect toH.

Conversely, let L be such that there exist a total learner h′ and an indexed hypothesis space
H = (Lj)j∈N such that h′ τ(α)Txtβδ-learns L with respect to H. We provide a learner h which
τ(CIndα)TxtβδC-learns L. Let (h′)∗ and h∗ denote their starred forms. As H is an indexed
hypothesis space, there exists a total computable function f such that for all j, x ∈ N

f(j, x) =
{

1, x ∈ Lj ;
0, otherwise.

Due to the S-m-n Theorem, there exists a strictly monotonically increasing function g ∈ R such that,
for all j, x ∈ N, we have ϕg(j)(x) = f(j, x). Now, we define, for all finite sequences σ ∈ Seq,

h∗(σ) = g((h′)∗(σ)).

We conclude the proof by showing that h τ(CIndα)TxtβδC-learns L. We first show that h is
τ(CInd). This follows directly as, for any finite sequence σ, there exists j ∈ N such that

ϕh(σ)(x) = ϕg(j)(x) = f(j, x) =
{

1, x ∈ Lj ;
0, otherwise.

As h′ only makes mind changes when h does and as, for any σ ∈ Seq, L(h′)∗(σ) = Ch∗(σ), we have
that h τ(α)TxtβδC-learns L. J

Berger et al. 9

We will see that in many cases requiring the learner h′ to be total is no restriction. It is already
known that, when learning arbitrary classes of recursively enumerable languages, Gold-style learners,
obeying delayable learning restrictions, may be assumed total [18]. This result directly transfers to
learning indexed families with respect to some hypothesis space. The following theorem holds.

I Theorem 2. Let δ be a delayable learning restriction. Then, we have that

[RTxtGδ]ind = [TxtGδ]ind.

Proof. This proof follows [18]. The inclusion [RTxtGδ]ind ⊆ [TxtGδ]ind is immediate. For
the other, let h TxtGδ-learn L with respect to a hypothesis space H. Let e ∈ N such that h = ϕe.
To define the equivalent learner, let Φ be a Blum complexity measure [5], that is for example, for
e, x ∈ N, Φe(x) could be the number of steps the program e needs to halt on input x. We define a
learner h′ such that, for all sequences σ ∈ Seq,

h′(σ) = h(max
⊆

({σ′ ⊆ σ | Φe(σ′) ≤ |σ| } ∪ {ε})).

As we only allow total learning sequences of h for languages in L, we have h(ε)↓ and, thus,
h′ is indeed total and computable. We show that h RTxtGδ-learns L with respect to H. To
that end, we use that δ is delayable. Let L ∈ L and T ∈ Txt(L). Now, for all n ∈ N, let
r(n) = |max⊆({σ′ ⊆ T [n] | Φe(σ′) ≤ n} ∪ {ε})|. Note that, for all n ∈ N, we have h′(T [n]) =
h(T [r(n)]). As δ is delayable, it suffices to show that r is non-decreasing and unbounded to prove
that h′ RTxtGδ-learns L with respect to H. By definition of r, we have that r is non-decreasing
and, for all n ∈ N, we have r(n) ≤ n and that r is unbounded, as there exists m ∈ N with m ≥ n

such that Φe(T [n]) ≤ m and, thus r(m) ≥ n. This concludes the proof. J

4 Learning Indexable Classes Consistently

Learners may have various useful properties. One such is being consistent with the information given
while maintaining learning power. For example, various behaviorally correct learners have been
investigated for consistency [20]. We study whether this can also be assumed when learning indexed
families and also with explanatory learners. Throughout this section, we provide the individual results
which, gathered together, provide the following theorem.

I Theorem 3. For all δ ∈ {T,Mon,SMon,WMon,CautTar,SemConv,Conv} and all
δ′ ∈ {Ex,Bc} as well as all β ∈ {G,Psd,Sd}, we have

[τ(Cons)Txtβδδ′]ind = [RTxtβδδ′]ind.

Unrestricted Bc-learners can be made consistent by simply patching in the missing elements into
the hypothesis. As one can check for consistency, one can decide whether changing the hypothesis
is necessary or not. It is immediate to see that this strategy works out, as the padding needs only to
be done while the learner did not converge yet and as the learner needs not to serve any additional
requirements. Note that this also preserves Ex-convergence. Interestingly, the same idea also works
out for certain restricted learners. In particular, strongly monotone and monotone learners can be
made consistent this way as well. Especially here, Theorem 1 comes in handy as we do not need to
fix the hypothesis space containing the padded hypotheses beforehand. We provide the result.

I Lemma 4. For β ∈ {G,Psd,Sd}, δ ∈ {T,Mon,SMon} and δ′ ∈ {Ex,Bc}, we have

[τ(Cons)Txtβδδ′]ind = [RTxtβδδ′]ind.

10 Maps for Learning Indexable Classes

Proof. The inclusion [τ(Cons)Txtβδδ′]ind ⊆ [RTxtβδδ′]ind is immediate. For the other, we
use a construction which patches in the seen data while maintaining the given learning restriction, as
seen in [20] for learning of arbitrary classes. By Theorem 1, it suffices to show

[τ(CInd)Txtβδδ′C] ⊆ [τ(CIndCons)Txtβδδ′C].

Let h be a learner and let L ⊆ τ(CInd)Txtβδδ′C(h). Using some auxiliary functions, we define a
τ(CIndCons)Txtβδδ′C-learner h′. For ease of notation, we use h and h′ as their starred learners.
Due to the S-m-n Theorem, there exists s ∈ R such that, for all x ∈ N and all finite sequences σ,

ϕs(σ)(x) =
{

1, if x ∈ content(σ) ∨ ϕh(σ)(x) = 1;
0, otherwise.

We now define the learner h′ such that for any finite sequence σ

h′(σ) =
{
h(σ), if content(σ) ⊆ Ch(σ);
s(σ), otherwise.

Note that ϕs(σ) and h′ are total because h is a τ(CInd)-learner. Intuitively, h′ has the same
hypothesis as h, if this hypothesis is consistent. Otherwise, it patches the input set into the hypothesis
of h. Thus, by construction, h′ only outputs consistent C-indices, i.e., it is a τ(CIndCons)-learner.
In particular, note that for any sequence σ we have that

Ch′(σ) = Ch(σ) ∪ content(σ). (1)

It remains to be shown that h′ δ′-learns every language in L and that it obeys the restriction δ
while doing so. We first show δ′-convergence. Let L ∈ L and T ∈ Txt(L). As h learns L, there
exists n0 ∈ N such that, for all n ≥ n0, we have Ch(T [n]) = L and, in the case of δ′ = Ex, also
h(T [n]) = h(T [n0]). For n ≥ n0, as h(T [n]) is consistent, h′(T [n]) will output h(T [n]), proving
that h′ δ′-learns L from text T .

Lastly, we prove that h′ learns L without violating the restriction δ. For δ = T this follows
immediately. We consider the remaining restrictions separately. Let L ∈ L and let T ∈ Txt(L).
1. Case: δ = SMon. Let n,m ∈ N such that n ≤ m. Since h is SMon, we have that

Ch(T [n]) ⊆ Ch(T [m]).

Now, by Equation (1), we get that h′ is SMon as

Ch′(T [n]) = Ch(T [n]) ∪ content(T [n]) ⊆ Ch(T [m]) ∪ content(T [m]) = Ch′(T [m]).

2. Case: δ = Mon. Let n,m ∈ N such that n ≤ m. Since h is Mon, we have that

Ch(T [n]) ∩ content(T) ⊆ Ch(T [m]) ∩ content(T).

Now, by Equation (1), we get that h′ is Mon as

Ch′(T [n]) ∩ content(T) =
(
Ch(T [n]) ∪ content(T [n])

)
∩ content(T)

⊆
(
Ch(T [m]) ∪ content(T [m])

)
∩ content(T) = Ch′(T [m]) ∩ content(T).

Thus, the proof is concluded. J

Berger et al. 11

The former strategy does not work for target-cautious learners. For example, the reason is that by
simply adding missing elements, one can suddenly overgeneralize the target language. “Resetting”
the conjecture to solely the information given when determining non-consistency preserves target-
cautiousness, as we show in the next result. Interestingly, this strategy of “resetting” also works for
weakly monotone learners as they, when inconsistent, may propose new suggestions. We provide the
next result.

I Lemma 5. For β ∈ {G,Psd,Sd}, δ ∈ {WMon,CautTar} and δ′ ∈ {Ex,Bc}, it holds

[τ(Cons)Txtβδδ′]ind = [RTxtβδδ′]ind.

Proof. The inclusion [τ(Cons)Txtβδδ′]ind ⊆ [RTxtβδδ′]ind is immediate. For the other, it
suffices to show [τ(CInd)Txtβδδ′C] ⊆ [τ(CIndCons)Txtβδδ′C], due to Theorem 1. We use
a similar construction as used for the case of W -indices, see [20]. The idea is to output solely
the content of the given data if the original learner is not consistent. Let h be a learner and let
L ⊆ τ(CInd)Txtβδδ′C(h). We define a learner h′ which τ(CIndCons)Txtβδδ′C-learns L. For
ease of notation, we use h and h′ as their starred learners. We now define the learner h′, such that for
any finite sequence σ ∈ Seq

h′(σ) =
{
h(σ), if content(σ) ⊆ Ch(σ);
ind(content(σ)), otherwise.

Note that h′ is total and computable because h only outputs C-indices. By construction, h′ only
outputs consistent C-indices, i.e., it is a τ(CIndCons)-learner.

It remains to be shown that h′ δ′-learns every language in L while obeying the restriction δ. We
first show δ′-convergence. Let L ∈ L and T ∈ Txt(L). As h learns L, there exists n0 such that,
for all n ≥ n0, we have Ch(T [n]) = L and, in the case of δ′ = Ex, also h(T [n]) = h(T [n0]). For
n ≥ n0, as h(T [n]) is consistent, h′(T [n]) will output h(T [n]), proving that h′ δ′-learns L on text T .

Lastly, we prove that h′ satisfies the restriction δ. We consider the restrictions separately. Let
L ∈ L and let T ∈ Txt(L).
1. Case: δ = WMon. Let n,m ∈ N such that n ≤ m and content(T [m]) ⊆ Ch′(T [n]). We show

that Ch′(T [n]) ⊆ Ch′(T [m]). If h(T [n]) is not consistent, that is, content(T [n]) 6⊆ Ch(T [n]), then
Ch′(T [n]) = content(T [n]). Thus, we have that

Ch′(T [n]) = content(T [n]) ⊆ content(T [m]) ⊆ Ch′(T [m]).

Otherwise, h(T [n]) is consistent and, thus, Ch(T [n]) = Ch′(T [n]). Since, by assumption,
content(T [m]) ⊆ Ch′(T [n]) and since h is weakly monotone, we have that Ch(T [n]) ⊆ Ch(T [m])
and also that Ch(T [m]) is consistent. Thus, in this case we get

Ch′(T [n]) = Ch(T [n]) ⊆ Ch(T [m]) = Ch′(T [m]).

2. Case: δ = CautTar. Let n ∈ N, then h′(T [n]) outputs either h(T [n]), in which case the hypo-
thesis is target-cautious due by assumption, or it outputs ind(content(T [n])). As content(T [n]) ⊆
content(T), this hypothesis is also target-cautious. J

Although (semantically) conservative learners may also change their mind upon inconsistency,
the same strategy does not work. The problem is that one may make them consistent too early and,
thus, prevent later mind changes from happening. An interesting strategy solves the problem. One
mimics the (possibly) inconsistent learner on information without repetition. Learning is preserved
this way, as when inferring infinite target languages there will always be new information to correct
an incorrect conjecture. On the other hand, finite target languages serve no problem either as, given
all information without repetition, either the learner was correct anyway or making it consistent is a
correct guess.

12 Maps for Learning Indexable Classes

I Lemma 6. For β ∈ {G,Psd,Sd}, δ ∈ {SemConv,Conv} and δ′ ∈ {Ex,Bc}, we have

[τ(Cons)Txtβδδ′]ind = [RTxtβδδ′]ind.

Proof. The inclusion [τ(Cons)Txtβδδ′]ind ⊆ [RTxtβδδ′]ind is immediate. For the other, we
use a similar construction as when learning W -indices as presented in [20]. By Theorem 1, it suffices
to show [τ(CInd)Txtβδδ′C] ⊆ [τ(CIndCons)Txtβδδ′C]. Let h be a learner and let L ⊆
τ(CInd)Txtβδδ′C(h). We define a learner h′ which τ(CIndCons)Txtβδδ′C-learns L. For ease
of notation, we use h and h′ as their starred learners. Given a sequence σ, we write σ̃ for the sequence
without repetitions or pause symbols. Analogously, Psd-learners given (content(σ), |σ|) consider
(content(σ̃), |σ̃|) instead. Notably, Sd-learners receive the same information as content(σ) =
content(σ̃). Now, we define h′ such that, for all finite sequences σ ∈ Seq,

h′(σ) =
{
h(σ̃), if content(σ̃) ⊆ Ch(σ̃);
ind(content(σ̃)), otherwise.

Note that, by construction, h′ is a τ(CIndCons)-learner. The intuition for the learner h′ is then to
mimic h on information without repetition. This is important to ensure (semantic) conservativeness.
Given σ, it either outputs the same hypothesis as h(σ̃), if this is consistent, or it outputs solely a
C-index for the content of the input.

Next, we show that h′ δ′-learns L. Let L ∈ L and T ∈ Txt(L). We distinguish whether L is
finite or not.
1. Case: L is finite. Then, there exists a minimal n0 ∈ N such that content(T [n0]) = L. Then,

by definition, for all n ≥ n0, we have that h′(T [n0]) = h′(T [n]) as no new element will be
witnessed. Now, if h(T [n0]) is consistent, then, because h is (semantically) conservative and thus
target-cautious, we have Ch(T [n0]) = L. Otherwise, h′ outputs ind(content(T [n0])). In both
cases, h′(T [n0]) is a correct hypothesis.

2. Case: L is infinite. Note that the transition to text T from the corresponding text T ′ ∈ Txt(L)
which does not contain any duplicates or pause-symbols can be done using an unbounded, non-
decreasing function r : N → N, that is, T = T ′ ◦ r. As δ′ is delayable, it suffices to show the
convergence on text T ′. As h also converges on T ′, there exists some n0 such that, for all n ≥ n0,
we have Ch(T ′[n]) = L and, if δ′ = Ex, also h(T ′[n0]) = h(T ′[n]). In particular, for all n ≥ n0,

h(T ′[n]) is consistent and, thus, h′(T ′[n]) = h(T̃ ′[n]) = h(T ′[n]). Thus, h′ δ′-learns L from
text T ′ since h does and, as δ′ is delayable, h′ also learns L from text T .

It remains to be shown that h′ obeys δ. The basic idea is that h′ may only make a mind change if
it sees a new element which is not consistent with the current hypothesis. Formally, let L ∈ L and
T ∈ Txt(L). Furthermore, let n,m ∈ N, with n < m, be such that content(T [m]) ⊆ Ch′(T [n]). We
distinguish between the two cases for δ.
1. Case: δ = SemConv. We show that Ch′(T [n]) = Ch′(T [m]). In the case of content(T [n]) =

content(T [m]), this follows by definition. Otherwise, there exists an element in content(T [m])
which is not in content(T [n]). Thus, in order for Ch′(T [n]) to enumerate content(T [m]), that
is, content(T [m]) ⊆ Ch′(T [n]), it must hold that content(T [m]) ⊆ C

h(T̃ [n])
. Then, since h is

semantically conservative, we have C
h(T̃ [n])

= C
h(T̃ [m]). In particular, h(T̃ [m]) is consistent,

meaning that Ch′(T [m]) = C
h(T̃ [m]). Altogether, we get

Ch′(T [n]) = C
h(T̃ [n])

= C
h(T̃ [m]) = Ch′(T [m]).

2. Case: δ = Conv. This case follows an analogous proof-idea, the main difference being that
semantic equalities need to be replaced with syntactic ones. We show that h′(T [n]) = h′(T [m]).

Berger et al. 13

In the case of content(T [n]) = content(T [m]), this follows by definition. Otherwise, there exists
an element in content(T [m]) which is not in content(T [n]). Thus, in order for Ch′(T [n]) to enu-
merate content(T [m]), that is, content(T [m]) ⊆ Ch′(T [n]), it must hold that content(T [m]) ⊆
C
h(T̃ [n])

. Then, since h is (syntactically) conservative, we have h(T̃ [n]) = h(T̃ [m]). In particular,

h(T̃ [m]) is consistent, meaning that h′(T [m]) = h(T̃ [m]). Altogether, we get

h′(T [n]) = h(T̃ [n]) = h(T̃ [m]) = h′(T [m]),

which concludes the proof. J

This concludes the proof of Theorem 3. We note that none of these strategies work for, say,
non-U-shaped learners as one may, by patching in missing elements into the hypotheses or “resetting”
them, accidentally produce a hypothesis for the target language and later forget it again. Thus, it
remains an open question whether learning under such restrictions even allows for consistent learning.
We pose the following question.

I Open Problem 1. Does δ ∈ {NU,SNU,Dec,SDec} allow for consistent learning, that is,
for β ∈ {G,Psd,Sd} and δ′ ∈ {Ex,Bc}, does it hold that

[τ(Cons)Txtβδδ′]ind = [RTxtβδδ′]ind?

5 Delayable Map for Learning Indexed Families

In this section we compare the power of (possibly partial) learners following various delayable
learning restrictions to each other. First, we gather known results from literature. It is a well-known
fact that learners need time in order to obtain full learning power, that is, set-driven learners lack
learning power. The following theorem holds.

I Theorem 7 ([24]). We have that [TxtGEx]ind \ [TxtSdEx]ind 6= ∅.

Furthermore, in the literature monotonic learners have been investigated thoroughly. Interestingly,
a chain of inclusions is obtained. The following theorem holds.

I Theorem 8 ([24]). We have that

[TxtSdSMonEx]ind = [TxtGSMonEx]ind ([TxtSdMonEx]ind (
([TxtGMonEx]ind ([TxtSdWMonEx]ind =
= [TxtGWMonEx]ind.

We remark that weak monotonicity as well as conservativeness is no restriction to set-driven
learners [24]. We expand this result by showing that set-driven learners may be assumed to be even
witness-based. This way, we also capture the remaining restrictions, such as (target-) cautiousness and
(strong) decisiveness. To obtain the desired result, we first show that target-cautious and witness-based
Gold-style learners acquire the same learning power. The idea is that, as target-cautious learners
never overgeneralize the target language, there always remain elements as witnesses to justify a mind
change if the current hypothesis is wrong. We obtain the following result.

I Theorem 9. We have that [TxtGWbEx]ind = [TxtGCautTarEx]ind.

Proof. The inclusion [TxtGWbEx]ind ⊆ [TxtGCautTarEx]ind is straightforward. For the
other, by assuming that G-learner are total, see Theorem 2, and by Theorem 1, it suffices to show

[τ(CInd)TxtCautTarGExC] ⊆ [τ(CInd)TxtGWbExC].

14 Maps for Learning Indexable Classes

Let h be a learner with L ⊆ τ(CInd)TxtGCautTarExC(h). Using Theorem 3, we can assume that
h is consistent, i.e., L ⊆ τ(CIndCons)TxtCautTarGExC(h). We now prove that the following
learner h′ is a τ(CInd)TxtGWbExC-learner for L. Let h′(ε) = h(ε) and, for all finite σ ∈ Seq
and x ∈ N, let

h′(σ_x) :=
{
h′(σ), if x ∈ Ch′(σ);
h(σ_x), otherwise.

Intuitively, h′ only updates its hypothesis if the latest datum may be used as a witness for a mind
change. As h is also consistent, we immediately have that h′ is witness-based. Furthermore, note that
h′ outputs a C-index on every input and thus is a τ(CInd)-learner.

It remains to be shown that h′ learns L. To that end, let L ∈ L and T ∈ Txt(L). Since h
correctly learns L there exists n0 ∈ N such that, for all n ≥ n0, we have h(T [n]) = h(T [n0]) and
ϕh(T [n]) = χL. We distinguish the following cases.
1. Case: h′(T [n0]) is a C-index for L. In this case, L \ Ch′(T [n0]) = ∅, and thus h′ cannot change

its mind again. Thus, it converges correctly.
2. Case: h′(T [n0]) is no C-index for L. As h is target-cautious and h′ mimics h, it cannot hold

L (Ch′(T [n0]). Thus, there exists x ∈ L with x /∈ Ch′(T [n0]). By definition of h′ and by
consistency of h, we have x /∈ content(T [n0]). Let n1 be such that x ∈ content(T [n1]). Then,
by construction, for all n ≥ n1, we have that h′(T [n]) = h(T [n1]), which is a C-index for L. J

This equality also includes weakly monotone learners. Thus, we already have that these are as
powerful as set-driven learners. However, we go one step further and show that these learners may
even be assumed total. We make use of Theorems 1 and 2. The idea is to mimic the Gold-style learner
on the minimal, consistent hypothesis. This way, target-cautiousness is preserved as well as learning
power. The latter works out as no guess overgeneralizes the target language and, thus, checking for
consistency is a valid strategy. The following theorem holds.

I Theorem 10. We have that [RTxtSdCautTarEx]ind = [TxtGCautTarEx]ind.

Proof. The inclusion [RTxtSdCautTarEx]ind ⊆ [TxtGCautTarEx]ind is immediate. For the
other one, as G-learner may be assumed total, see Theorem 2, and by Theorem 1, it suffices to show

[τ(CInd)TxtGCautTarExC] ⊆ [τ(CInd)TxtSdCautTarExC].

Let h be a learner and let L ⊆ τ(CInd)TxtGCautTarExC(h). By Theorem 3, we may assume h
to be consistent. For a finite set D, for k ≤ |D|, let σD[k] be the canonical sequence of D of length k,
that is, the sequence of the first k elements in D in strictly ascending order, and define the Sd-learner
h′ as

h′(D) = h(σD[min{k′ ≤ |D| | D ⊆ Ch(σD[k′])}]).

Mimicking learner h, the newly defined learner h′ is target-cautious whenever h is and it always
outputs C-indices. It remains to be shown that h′ SdExC-learns L. Let, to that end, L ∈ L. We
distinguish the following cases.
1. Case: L is finite. Let k0 ∈ N be the minimal k′ ≤ |L| such that L ⊆ Ch(σL[k′]). By consistency

of h, such k′ exists. Then, we have by h being target-cautious that ¬(L (Ch(σL[k0])). Altogether,
we have

Ch′(L) = Ch(σL[k0]) = L.

Berger et al. 15

2. Case: L is infinite. Then, consider the canonical text T of L. As h learns L, there exists a minimal
n0 ∈ N such that Ch(T [n0]) = L. By target-cautiousness of h and minimal choice of n0, there
exists n1 ≥ n0 such that for all n < n0 we have

content(T [n1]) \ Ch(T [n]).

Then, for all D with content(T [n1]) ⊆ D ⊆ L, we have h′(D) = h(T [n0]) as desired. J

Again with Theorem 1, we obtain that set-driven learners may be assumed total and witness-based.
The idea resembles the approach for partially set-driven learners of arbitrary classes of languages
[19]. To obtain this, we assume the information coming in a certain order and then mimic the learner
on the least input where no mind change is witnessed. Then, while enumerating, we check whether
any later datum causes a mind change. If so, we stop the enumeration. Especially here, Theorem 1
comes in handy as we do not need to fix the hypothesis space beforehand, but rather build it up on the
fly. The following result holds.

I Theorem 11. We have that [RTxtSdWbEx]ind = [RTxtSdCautTarEx]ind.

Proof. The direction [RTxtSdWbEx]ind ⊆ [RTxtSdCautTarEx]ind follows immediately. For
the other, by Theorem 1, it suffices to show that

[τ(CInd)TxtSdCautTarExC] ⊆ [τ(CInd)TxtSdWbExC].

Let h τ(CInd)TxtSdCautTarExC -learn L. We define the desired witness-based learner h′. Given
a finite set D and k ≤ |D|, let D[k] be the set of the first k elements (in ascending order) in D, and
define

kD = min{k ≤ |D| | ∀D′, D[k] ⊆ D′ ⊆ D : h(D′) = h(D)}.

That is, D[kD] contains the minimal amount of elements of D in ascending order where no mind
change is witnessed. Furthermore, for any finite set D, define

ϕs(D)(x) =


1, if x ∈ D;
0, else, if ϕh(D)(x) = 0;
1, else, if ∀D′, D ⊆ D′ ⊆ D ∪ Cxh(D) : h(D) = h′(D);
0, otherwise.

Note that for any locking set D of some language L, we have Cs(D) = L. Then, for any finite set D,
we define the learner

h′(D) =
{

ind(D[kD]), if ∃x < max(D[kD]), x /∈ D[kD] : ϕh(D[kD])(x) = 1;
s(D[kD]), otherwise.

Intuitively, the learner first searches the minimal amount of elements where no mind change is
witnessed. Then, given D[kD], if the learner on input D[kD] witnesses an element to be (possibly)
out of order, it outputs ind(D[kD]). This way, we keep this element as a witness for a possible,
later mind change. Otherwise, the learner outputs s(D[kD]) which conducts a forward search and
enumerates all elements where no mind change is witnessed.

Formally, we first show that h′ learns L correctly. Let therefore L ∈ L. We distinguish the
following cases.
1. Case: L is finite. Here, h(L) is a correct conjecture and, thus, h(L[kL]) as well. Note that, in

particular, L[kL] is a locking set forL. As there exists no x < max(L[kL]) withϕh(L[Lk])(x) = 1,
we have that h′(L[kL]) = s(L[kL]). Since L[kL] is a locking set, s(L[kL]) is a correct conjecture.

16 Maps for Learning Indexable Classes

2. Case: L is infinite. Let Tc be the canonical text for L and let n0 ∈ N be minimal such that
D0 := content(Tc[n0]) is a locking set for h on L. As, for all n < n0, content(Tc[n]) is no
locking set, there exists some xn ∈ L where this is witnessed. Let xmax = max{xn | n < n0}
and let n1 ≥ n0 such that, for D1 := content(Tc[n1]), we have xmax ∈ D1. Then, for any
D with D1 ⊆ D ⊆ L, we have that h′(D) = h′(D1). As D1 is a locking set, we have that
h′(D1) = s(D1) is a correct hypothesis.

Lastly, we show that h′ is witness-based. Let, to that end, D1 ⊆ D2 ⊆ D3 ⊆ L such that
h′(D1) 6= h′(D2). We show that (Ch′(D3) ∩D3) \Ch′(D1) 6= ∅. For i ∈ {1, 2, 3}, let ki := kDi

and
let D′i := D[ki]. Then, as h′(Di) = h′(D′i), it suffices to show

(Ch′(D′3) ∩D3) \ Ch′(D′1) 6= ∅.

We distinguish the following cases.
1. Case: D′1 = D′3. In particular, D′1 = D′2 = D′3. Then, h′(D1) = h′(D2), a contradiction to the

initial assumption.
2. Case: D′3 \ D′1 6= ∅. Let x be a maximal such element. Either, x /∈ Ch(D′1) and, thus by

Condition (2), it will not be considered when enumerating Ch′(D′1). Otherwise, x /∈ Ch′(D′1) as
it either is smaller than max(D′1) or it will not be enumerated by s(D′1) as it witnesses a mind
change.

3. Case: D′1 \D′3 6= ∅. If D′3 ⊆ D′1, then, as D1 ⊆ D3, the minimality of k1 is violated. Thus, it
also holds that D′3 \D′1 6= ∅, and we proceed just as in the previous case. J

This closes the study of set-driven learners following delayable learning restrictions. It remains to
be shown that Gold-style learners may be assumed strongly decisive. We do so in two steps. First, we
show that unrestricted learners may be assumed strongly non-U-shaped in general. The idea is to
search for locking sequences. If we witness that the current sequence is not locking, we poison the
produced hypothesis [7]. We can do so, as indexed families provide a decision procedure to check
whether x ∈ Li or not. When poisoning, we simply output a hypothesis contradicting all of the given
languages. Note that, by Theorem 1, we may construct poisoned hypotheses on the fly.The following
theorem holds.

I Theorem 12. We have that [TxtGSNUEx]ind = [TxtGEx]ind.

Proof. The inclusion [TxtGSNUEx]ind ⊆ [TxtGEx]ind is immediate. For the other direction,
note that G-learners may be assumed total by Theorem 2. Thus, by Theorem 1, it suffices to show that

[τ(CInd)TxtGExC] ⊆ [τ(CInd)TxtGSNUExC].

Let h be a τ(CInd)TxtGExC-learner and let L ⊆ τ(CInd)TxtGExC(h). We provide a
τ(CInd)TxtGSNUExC-learner for L = (Li)i∈N. The idea is the following. Since L is in-
dexed, there exists a procedure to decide whether x ∈ Li or not. Given any input, we check whether
it serves as a locking sequence. Note that TxtGEx-learners may be assumed strongly locking [12].
While it does so, we mimic the learner on this input. Once we figure it not being a locking sequence,
we start poisoning this guess by contradicting it to each possible language Li. Thus, the resulting
learner will output the correct language once it finds a locking sequence thereof.

Formally, we first define the auxiliary predicate which, given a sequence σ and an element x ∈ N,
tells us whether σ is a candidate for a locking sequence up until the element x, that is,

Q(σ, x) =

1, if ∃σ′ ∈
(
Cxh(σ)

)≤x
#
, σ ⊆ σ′∃y ≤ x : ϕh(σ)(y) 6= ϕh(σ′)(y);

0, otherwise.

Berger et al. 17

We use Cxh(σ) to denote all elements in Ch(σ) up until x, that is, Cxh(σ) = {x′ ≤ x | ϕh(σ)(x′) = 1}.
Next, the S-m-n Theorem provides us with an auxiliary function which poisons conjectures on
non-locking sequences. There exists s ∈ R such that for all x ∈ N and σ ∈ Seq

ϕs(σ)(x) =


ϕh(σ)(x), if Q(σ, x) = 0;
0, else, if x ∈ Lx−min{y∈N|Q(σ,y)=1};
1, otherwise.

Note that in the second case {y ∈ N | Q(σ, y) = 1} is non-empty (as the first case does not hold)
and that its elements are bound by x. Lastly, we need the following auxiliary function which finds
the minimal sequence on which h agrees with the current hypothesis up until some point. For any
sequence σ, define

M(σ) = {σ′ ⊆ σ | ∀σ′′ ∈ content(σ)≤|σ|# ∀x ≤ |σ| : ϕh(σ)(x) = ϕh(σ′_σ′′)(x)}.

Finally, we define the learner h′ as, for any sequence σ,

h′(σ) = s(min(M(σ))).

Now, let L ∈ L and let T ∈ Txt(L). We show that h′ converges to a correct hypothesis and,
afterwards, show this learning to be strongly non-U-shaped. As h is strongly locking, there exists a
minimal n0 ∈ N such that T [n0] is a locking sequence for h on L. In particular, there exists n1 ≥ n0
such that, for all n < n0, T [n] /∈M(T [n1]), that is, we witness all sequences prior to T [n0] not to be
locking. Then, for all n ≥ n1, we have that min(M(T [n])) = T [n0] and, thus, h′(T [n]) = s(T [n0]).
Furthermore, for any x ∈ N, we have that Q(T [n0], x) = 0 as all the sequences output the same
hypothesis. Thus, ϕs(T [n0]) = ϕh(T [n0]), meaning that s(T [n0]) is a C-index for L.

We now show that this learning is strongly non-U-shaped. First, we show, for all n < n0, that
s(T [n]) is no C-index for L. By minimality of n0, T [n] is no locking sequence for h on L. Now,
if h(T [n]) is no C-index of L, neither will s(T [n]) be, as it either outputs the same as h(T [n]) or
eventually contradicts all languages in L. If, otherwise, h(T [n]) is a C-index of L, there exists some
point x ∈ N witnessing T [n] not to be a locking sequence. Then, s(T [n]) starts contradicting all
languages in L. Thus, s(T [n]) and also h′(T [n]) is no C-index for L. J

Building on this result, we go one step further and show the learners to be even strongly decisive.
The strategy the newly found learner employs is to wait with changing its hypothesis until it witnesses
a mind change. And, when doing so, it first checks whether this mind change produces a new
hypothesis which is different from all previous ones. The following theorem holds.

I Theorem 13. We have that [TxtGSDecEx]ind = [TxtGSNUEx]ind.

Proof. The inclusion [TxtGSDecEx]ind ⊆ [TxtGSNUEx]ind follows immediately. For the
other, it suffices, by the observation that G-learners may be assumed total (Theorem 2) and by
Theorem 1, to show that

[τ(CInd)TxtGSNUExC] ⊆ [τ(CInd)TxtGSDecExC].

To that end, let h be a learner and let L ⊆ τ(CInd)TxtGSNUExC(h). We define an equivalently
powerful τ(CInd)TxtGSDecExC-learner h′ as follows. Let h′(ε) = h(ε) and, for any finite
sequence σ 6= ε, let σ′ (σ be the minimal sequence on which h′(σ′) = h′(σ−), that is, the sequence
on which h′ based its previous output. Then, define

h′(σ) =


h(σ′), if ∀σ′′, σ′ ⊆ σ′′ ⊆ σ : h(σ′) = h(σ′′);
h(σ), else, if ∀σ′′ ⊆ σ′ ∃x ≤ |σ| : ϕh′(σ′′)(x) 6= ϕh(σ)(x);
h(σ′), otherwise.

18 Maps for Learning Indexable Classes

As h′ mimics h, h′ always outputs C-indices and, hence, is τ(CInd). The intuition is to only update
the hypothesis if the current hypothesis cannot be based on a locking sequence and if all previous
ones are witnessed to be semantically different. As h is SNU, h′ may never abandon a correct guess
and all hypotheses before that are incorrect. Thus, h′ preserves the learning power.

Formally, we first show that h′ is, indeed, SDec. We do so by showing that whenever h′ makes
a mind change, this new hypothesis is certainly semantically different from all previous ones and,
thus, also syntactically different. Let L ∈ L and let σ ∈ L∗# such that h′(σ−) 6= h′(σ), that is,
h made a mind change. Note that h′(σ) = h(σ). Furthermore, let h′ base its prior hypothesis on
σ′ ⊆ σ−, that is, σ′ ⊆ σ− is the minimal sequence on which, for all σ′′ with σ′ ⊆ σ′′ ⊆ σ−, we
have h′(σ′′) = h′(σ−). The only case where h′ makes a mind change is, if for all σ′′ ⊆ σ′ there
exists x ≤ |σ| such that

ϕh′(σ′′)(x) 6= ϕh(σ)(x).

As h′(σ) = h(σ) and, therefore, ϕh(σ) = ϕh′(σ), we have, for all σ̃ ⊆ σ′,

Ch′(σ̃) 6= Ch′(σ).

As there are no further mind changes until σ−, this holds for all σ̃ (σ. Thus, h′ is SDec.
To show that h converges correctly, let L ∈ L and let T ∈ Txt(L). Then there exists a (minimal)

n0 such that, for all n ≥ n0, h(T [n0]) = h(T [n]) and h(T [n]) is a C-index for L. We distinguish
the following cases.
1. Case: h′(T [n0]) = h(T [n0]). In this case, h′(T [n0]) is a correct C-index and, as h never changes

its mind again, neither does h′.
2. Case: h′(T [n0]) 6= h(T [n0]). Let n1 < n0 be such that h′(T [n0]) = h(T [n1]). In particular,

h(T [n1]) 6= h(T [n0]). Thus, the first case of the definition of h′ cannot hold. By h being SNU
and by the minimal choice of n0, there exists some minimal n2 ≥ n0 such that h′ witnesses all
hypotheses prior to (and including) h(T [n1]) to differ from h(T [n2]). Then, by the second case
of the definition, it will output h(T [n2]) never to change its mind again. J

Altogether, we obtain the full map as depicted in Figure 1. It remains open to include partially
set-driven learners into this picture. Due to known results from literature and the results we obtained,
in particular, it remains to be shown whether Gold-style learners may be assumed strongly decisive
and partially set-driven at the same time. We pose the following open question.

I Open Problem 2. May Gold-style strongly decisive learners be assumed partially set-driven so?

6 Comparing Convergence Criteria when Learning Indexable
Classes

In this section we compare total learners under various memory constraints which converge syn-
tactically to such that converge semantically. The gathered results we depict in Figure 2. Usually,
semantically converging learners are more powerful than their syntactic counterpart, for example,
when learning arbitrary classes of languages [12]. However, when learning indexed families class-
comprisingly different results are obtained. It is known that explanatory G-learner and behaviorally
correct ones are equally powerful [25]. As G-learner may be assumed total, see Theorem 2, we
obtain the following result.

I Theorem 14 ([25]). We have that [RTxtGEx]ind = [RTxtGBc]ind.

Berger et al. 19

Furthermore, it is known that Gold-style learners do not rely on the order of the presented elements
but rather on the time given. The latter result we already discussed in Theorem 7 and note that it also
holds true for total learners, the former is known to hold true for (possibly) partial learners. In order
to obtain this result, one searches for the minimal candidate for a locking sequence and mimics the
learner on it. As G-learner may be assumed total, see Theorem 2, one obtains a total Psd-learner
this way. Thus, the following theorem holds.

I Theorem 15. We have that [RTxtPsdEx]ind = [TxtGEx]ind.

Proof. The inclusion [RTxtPsdEx]ind ⊆ [TxtGEx]ind is straightforward. For the other, we
follow the proof in [12]. Let h TxtGEx-learn L with respect to a hypothesis space H. Without
losing generality, see Theorem 2, let h be total. We define a Psd-learner h′ using an auxiliary
function M ∈ R as, for all finite sets D ⊆ N and t ∈ N,

M(D, t) =
{
σ ∈ D≤t#

∣∣∣ ∀τ ∈ D≤t# : h(σ) = h(στ)
}

;

h′(D, t) =
{
h(min(M(D, t))), if M(D, t) 6= ∅;
h(ε), otherwise.

Intuitively, h′ mimics h on minimal potential locking sequences. Note that h′ is total as h is so. To
show that h learns L, let L ∈ L and T ∈ Txt(L). Let σ0 be the minimal locking sequence of h on L.
We show that h′ eventually converges to h(σ0). To that end, let n0 ∈ N be large enough such that,
with D0 = content(T [n0]), we have

content(σ0) ⊆ D0,
σ0 ≤ n0 and
for all σ < σ0 there exists σ′ ∈ (D0)≤n0

such that h(σ) 6= h(σσ′), i.e., σ′ witnesses σ /∈
M(D0, n0).

Then, for all n ≥ n0, we have min(M(content(T [n]), n)) = σ0 and thus h′ converges to h(σ0). As
this is a correct hypothesis for L, h′ learns L. J

By patching in the information given [20], even iterative Bc-learners are as powerful as Gold-style
Bc-learners. This also holds true for total such learners. We provide the next theorem.

I Theorem 16. We have that [RTxtItBc]ind = [RTxtGBc]ind.

Proof. Immediately, we have [RTxtItBc]ind ⊆ [RTxtGBc]ind. We apply a padding argument
[20] for the other direction. By Theorem 1, it suffices to show that

[τ(CInd)TxtGBcC] ⊆ [τ(CInd)TxtGExC].

Let h be a τ(CInd)TxtGBcC-learner and let L ⊆ τ(CInd)TxtGBcC(h). Recall that pad is an
injective padding function such that for all e ∈ N and all finite sequences σ we have ϕpad(e,σ) = ϕe.
We define the iterative learner h′ for all previous hypotheses p, all finite sequences σ and all x ∈ N,

h′(∅) = pad(h(ε), ε);
h′(pad(p, σ), x) = h′(pad(h(σ_x), σ_x)).

It is immediate to see that, for all sequences σ, we haveϕ(h′)∗(σ) = ϕh(σ). Thus, h′ τ(CInd)TxtItBc-
learns L. J

As patching changes the hypothesis with every new datum, this approach does not work for
explanatory iterative learners. It is known that this problem cannot be solved as there exists a well-
known class separating set-driven explanatory learners from iterative ones. This result transfers to
total learners as well as the next theorem shows.

20 Maps for Learning Indexable Classes

I Theorem 17. We have that [RTxtSdEx]ind \ [RTxtItEx]ind 6= ∅.

Proof. This is a standard proof and we include it for completeness [14]. By Theorem 1, it suffices to
provide a class of languagesLwhich is τ(CInd)TxtSdExC -learnable but not τ(CInd)TxtItExC
so. We define L := {N \ {0}} ∪ {D ∪ {0} | D ⊆Fin N}. Then, the following learner learns L. Fix
p0 as a code for the language N \ {0} and define, for any finite sequence σ,

h(σ) =
{
p0, if 0 /∈ content(σ);
ind(content(σ)), otherwise.

It is immediate that h learns L. Assume there exists a learner h′ which τ(CInd)TxtItEx-learns
L. Let L = N \ {0}, let T be a text of L and let n0 ∈ N such that for all n ≥ n0 we have
h′(T [n0]) = h′(T [n]). Let x = max(content(T [n0])), then on the following two texts of distinct
languages in L

T1 = σ_(x′ + 1)_0∞;
T2 = σ_(x′ + 2)_0∞,

the learner h′ generates the same hypotheses. Thus, it is unable to distinguish between these two.
Therefore, L cannot be learned by h′. J

On the other hand, each iterative learner can be made set-driven by simply, given all data,
mimicking the iterative learner on input with pause-symbols between each two elements. This
well-known approach also works for our setting as well. The following theorem holds.

I Theorem 18. We have that [RTxtItEx]ind ⊆ [RTxtSdEx]ind.

Proof. This is a standard proof and we include it for completeness [16]. Let h TxtItEx-learn the
indexed family L with respect toH. We provide a Sd-learner learning L. To that end, we expand the
hypothesis spaceH by adding all finite sets. This new hypothesis space we denote byH′. For ease of
notation, we refer to these new indices as, for all D, ind(D). Now, for any set D, let sort#(D) be
the sequence of the elements in D sorted in ascending order, with a # between each two elements.
Furthermore, let h∗ be the starred form of h. Now, we define h′ as, for all finite sets D,

h′(D) =
{
h∗(sort#(D)), if h∗(sort#(D)) = h∗(sort#(D)_#);
ind(D), otherwise.

To show that h′ learns L with respect to H′, let L ∈ L. If L is finite, then either h∗(sort#(L)) =
h∗(sort#(L)_#), in which case h converges to h′(L) = h∗(sort#(L)) on text sort#(L)_#∞.
Otherwise, we have h′(L) = ind(L). In both cases, h′ learns L as h′(L) is a correct hypothesis for L.

On the other hand, if L is infinite, then h converges to a correct hypothesis for L on the text
sort#(L). Let σ0 be the initial sequence of sort#(L) on which h has converged and let D0 =
content(σ0). Then, for all x ∈ N \D0, we have h∗(σ0

_x) = h∗(σ0) = h∗(σ0
_#) as h is iterative.

Therefore, for all D′ with D0 ⊆ D′ ⊆ L, we have h∗(sort#(D′)) = h∗(sort#(D′)_#) and
h∗(sort#(D′)) = h∗(sort#(D0)), which is a correct hypothesis for L. As h′(D′) = h(sort#(D′)),
we have the convergence of h′ to a correct hypothesis for L and, thus, h′ learns L. J

Interestingly, only iterative learners benefit from loosening the convergence criterion. We have
already investigated the situation for Gold-style and partially set-driven learners. Now, we conclude
this section by showing that, first, total set-driven learners and then also transductive ones do not
benefit from this relaxation.

Berger et al. 21

Considering set-driven learners, we first show that behaviorally correct such learners may be
assumed target-cautious in general. We do so by conducting a forward search, checking the learners
output on each possible future hypothesis. Should we detect inconsistencies, we know that the current
information is not locking and, thus, we can stop the enumeration. This way, no overgeneralization
will happen as, otherwise, locking sets must be included in the search. We obtain the following result.

I Lemma 19. We have that [τ(Cons)TxtSdCautTarBc]ind = [RTxtSdBc]ind.

Proof. The inclusion [τ(Cons)TxtSdCautTarBc]ind ⊆ [RTxtSdBc]ind is straightforward. By
Theorem 1, it suffices to show [τ(CInd)TxtSdBcC] ⊆ [τ(CIndCons)TxtSdCautTarBcC] for
the other. We apply a similar construction of forwards searches as when learning arbitrary classes of
languages [10]. Let h be a total learner with L = τ(CInd)TxtSdBcC(h). According to Theorem 3,
we may assume h to be consistent on any input. Now, define a τ(CIndCons)TxtSdCautTarBcC -
learner h′ as follows. Let, for all x ∈ N and finite sets D ⊆ N,

E(x,D) := D ∪ {x} ∪ {x′ ≤ x | ϕh′(D)(x′) = 1};

ϕh′(D)(x) =


1, if x ∈ D;
0, else, if ϕh(D)(x) = 0;
1, else, if ∀D′′, D ⊆ D′′ ⊆ E(x,D) : E(x,D) ⊆ Ch(D′′);
0, otherwise.

Intuitively, the conjecture of h′(D) contains D itself and certain additional elements of the hypothesis
of h on D. For these additional elements, h′ checks whether all possible future hypotheses of h
contain these elements as well. If so, h′ adds them in its hypothesis, otherwise it does not. This
way, we prevent overgeneralizing target languages. Note that by construction h′ is τ(CIndCons).
Furthermore, note that, for any finite set D, we have

Ch′(D) ⊆ Ch(D). (2)

We first show that h′ Bc-learns any language L ∈ L. We distinguish the following cases.
Case 1: L is finite. Since h learns L, we have ϕh(L) = χL. Consider h′(L). Now, for any element
x ∈ L, we have ϕh′(L)(x) = 1, by definition. For any element x /∈ L, we have ϕh(L)(x) = 0
and, therefore, ϕh′(L)(x) = 0 as well. Thus, ϕh′(L) = χL and h′ learns L.

Case 2: L is infinite. Let D0 be a BcC-locking set for h on L. We show that, for any D with
D0 ⊆ D ⊆ L, h′(D) is a correct hypothesis for L. We need to show that L = Ch′(D). Note that,
by Condition (2), Ch′(D) ⊆ Ch(D) = L. Thus, it remains to be shown that L ⊆ Ch′(D). To that
end, let x ∈ L. If x ∈ D, then x ∈ Ch′(D) by consistency. Otherwise, we have ϕh(D)(x) = 1
and, thus, are in the third case of the definition of h′. We show that x gets enumerated this way.
By Condition (2), we get

E(x,D) = D ∪ {x} ∪ {x′ ≤ x | ϕh′(D)(x′) = 1}
⊆ D ∪ {x} ∪ {x′ ≤ x | ϕh(D)(x′) = 1} ⊆ L.

As D0, and therefore also D, is a BcC-locking set, we have for all D′′ with D ⊆ D′′ ⊆ L that

E(x,D) ⊆ L = Ch(D′′).

So the third condition is met and, therefore, ϕh′(D)(x) = 1. Hence, h′ BcC-learns L.
Finally, it remains to be shown that h′ is target-cautious. To that end, assume that h′ is not target-
cautious. Thus, there exists a language L ∈ L and a set D ⊆ L such that L (Ch′(D). Let

22 Maps for Learning Indexable Classes

x̃ ∈ Ch′(D) \ L and let D0 ⊇ D be a BcC-locking set for L on h. Let x′ := max((D0 ∪ {x̃}) \D.
As x′ ∈ Ch′(D) but not inD, it must be enumerated by the third condition of the definition of h′. Note
thatD0 ⊆ E(x′, D) (asD0 must be enumerated until x′). Now, for allD′′ withD ⊆ D′′ ⊆ E(x′, D),
it must hold that

x ∈ E(x′, D0) ⊆ Ch(D′′).

However, this is a contradiction for D′′ = D0 as Ch(D0) = L but x /∈ L. This concludes the
proof. J

In a second step, we construct an explanatory learner from the target-cautious behaviorally correct
learner. The idea is to always mimic the Bc-learner on the ≤-minimal set on which it is consistent.
This way, we obtain syntactic convergence. On the other hand, the final hypothesis cannot be
incorrect as, eventually, the learner has enough information to figure out incorrect guesses and, as it is
target-cautious, these consistent conjectures are no overgeneralizations. The following result holds.

I Theorem 20. We have that [RTxtSdEx]ind = [RTxtSdBc]ind.

Proof. The inclusion [RTxtSdEx]ind ⊆ [RTxtSdBc]ind is immediate. For the other, by The-
orem 1, it suffices to show that

[τ(CInd)TxtSdBcC] ⊆ [τ(CInd)TxtSdExC].

Let h be a learner and let L ⊆ τ(CInd)TxtSdBcC(h). By Theorem 19, we may assume h to be
target-cautious. We provide a learner h′ which ExC-learns L. The main idea is to search for the
first set on which the learner h is consistent. By its target-cautiousness, this way we will, eventually,
conjecture the right language. For the formal details, fix a total order ≤ on finite sets. For any finite
set D, we define the following auxiliary functions as

M(D) = {D′ ⊆ D | ∀x ∈ D : ϕh(D′)(x) = 1}.

Finally, for any finite set D, define h′(D) = h(min≤(M(D))). To show correctness, let L ∈ L. We
distinguish the following cases.
1. Case: L is finite. Let D′ ⊆ L such that h′(L) = h(D′). Since D′ ∈M(L), we have L ⊆ Ch(D′).

Since h is target-cautious, the equality holds, that is, L = Ch(D′). Thus, h′(L) = h(D′) is a
correct hypothesis.

2. Case: L is infinite. Let D0 be the ≤-minimal set such that Ch(D0) = L. Let D1 ⊇ D0 such
that min≤(M(D1)) = D0. Such a set exists as h, due to the minimal choice of D0, conjectures
incorrect guesses on D′ ⊆ L with D′ < D which do not overgeneralize the target language.
Then, for any D, with D1 ⊆ D ⊆ L, we have h′(D) = h(D0), a correct conjecture. J

Finally, behaviorally correct transductive learners, being unable to save any information about
previous guesses, can be made explanatory immediately. One simply awaits a non-? guess and then
checks for the first element in this guess which also produces a non-?. We provide the theorem.

I Theorem 21. We have that [RTxtTdEx]ind = [RTxtTdBc]ind.

Proof. The inclusion [RTxtTdEx]ind ⊆ [RTxtTdBc]ind follows immediately. For the other, it
suffices, by Theorem 1, to show that

[τ(CInd)TxtTdBcC]ind ⊆ [τ(CInd)TxtTdExC]ind.

Berger et al. 23

Let h be a τ(CInd)TxtTdBcC-learner and let L ⊆ τ(CInd)TxtTdBcC(h). We define M ∈ R
and h′ ∈ R such that for all x ∈ N, y ∈ N#,

M(x) =
{
x′ ≤ x | ϕh(x)(x′) = 1 ∧ h(x′) 6= ?

}
;

h′(y) =


h(#), if y = #;
?, else, if h(y) = ?;
h(min(M(y))), otherwise.

By construction, h′ is only outputs C-indices (or ?). Intuitively, h′ outputs the hypothesis of h on the
smallest element in the hypothesis h on the current datum (if it is not “?”). We claim that h′ learns L.
Let L ∈ L. First, note that for any x ∈ L, we have that either h(x) = ? or h(x) is a C-index of L. If
that were not the case, h would not identify L on any text which has infinitely many occurrences of x.
Furthermore, for at least one x ∈ L, h(x) must not be “?”. Thus, there exists a minimal x′ ∈ L, such
that h(x′) is a characteristic index of L. The idea of this construction is to search for such minimal x′.
Note that, if h(x) 6= ?, M(x) 6= ∅ as x ∈M(x).

Let T ∈ Txt(L) and let n0 ∈ N be minimal such that content(T [n0]) 6= ∅ and such that
h(T (n0 − 1)) 6= ?. Then, h′(T (n0 − 1)) = h(min(M(T (n0 − 1)))), a correct guess. Further-
more, for n > n0 either h(T (n)) = ? and with it h′(T (n)) = ? or, otherwise, h′(T (n)) =
h(min(M(T (n)))) = h(min(M(T (n0 − 1)))). Thus, we have ExC-convergence. J

We remark that all these results, except for Lemma 19 and Theorem 20, also hold for (possibly)
partial learners. These are obtained either directly, for example by applying Theorem 2, or by slightly
changing the provided proofs. However, one cannot directly translate Lemma 19, and therefore
Theorem 20, as, in the forward search, totality of the learner is key. Otherwise, this search can be
indefinite, breaking the indexability. We conclude this work by posing the following open question.

I Open Problem 3. Does [TxtSdEx]ind = [TxtSdBc]ind hold?

References

1 Dana Angluin. Inductive inference of formal languages from positive data. Information and Control,
45:117–135, 1980.

2 Ganesh Baliga, John Case, Wolfgang Merkle, Frank Stephan, and Rolf Wiehagen. When unlearning helps.
Information and Computation, 206:694–709, 2008.

3 Jānis M. Bārzdin, š. Inductive inference of automata, functions and programs. In American Mathematical
Society Translations, pages 107–122, 1977.

4 Lenore Blum and Manuel Blum. Toward a mathematical theory of inductive inference. Information and
Control, 28:125–155, 1975.

5 Manuel Blum. A machine-independent theory of the complexity of recursive functions. Journal of the
ACM, 14:322–336, 1967.

6 Lorenzo Carlucci, John Case, Sanjay Jain, and Frank Stephan. Results on memory-limited u-shaped
learning. Inf. Comput., 205:1551–1573, 2007.

7 John Case and Timo Kötzing. Strongly non-U-shaped language learning results by general techniques.
Information and Computation, 251:1–15, 2016.

8 John Case and Christopher Lynes. Machine inductive inference and language identification. In Proc. of
the International Colloquium on Automata, Languages and Programming (ICALP), pages 107–115, 1982.

9 John Case and Samuel E. Moelius. Optimal language learning from positive data. Information and
Computation, 209:1293–1311, 2011.

10 Vanja Doskoč and Timo Kötzing. Cautious limit learning. In Proc. of the International Conference on
Algorithmic Learning Theory (ALT), 2020.

11 Mark Fulk. A Study of Inductive Inference Machines. PhD thesis, 1985.

24 Maps for Learning Indexable Classes

12 Mark A. Fulk. Prudence and other conditions on formal language learning. Information and Computation,
85:1–11, 1990.

13 E. Mark Gold. Language identification in the limit. Information and Control, 10:447–474, 1967.
14 Sanjay Jain, Daniel Osherson, James S. Royer, and Arun Sharma. Systems that Learn: An Introduction to

Learning Theory. MIT Press, Cambridge (MA), Second Edition, 1999.
15 Klaus Jantke. Monotonic and non-monotonic inductive inference. New Generation Computing, 8:349–360,

1991.
16 Efim B. Kinber and Frank Stephan. Language learning from texts: Mindchanges, limited memory, and

monotonicity. Inf. Comput., 123:224–241, 1995.
17 Timo Kötzing. A solution to wiehagen’s thesis. Theory of Computing Systems, 60:498–520, 2017.
18 Timo Kötzing and Raphaela Palenta. A map of update constraints in inductive inference. Theoretical

Computer Science, 650:4–24, 2016.
19 Timo Kötzing and Martin Schirneck. Towards an atlas of computational learning theory. In Proc. of the

Symposium on Theoretical Aspects of Computer Science (STACS), pages 47:1–47:13, 2016.
20 Timo Kötzing, Martin Schirneck, and Karen Seidel. Normal forms in semantic language identification.

In Proc. of the International Conference on Algorithmic Learning Theory (ALT), pages 76:493–76:516,
2017.

21 Timo Kötzing. Abstraction and Complexity in Computational Learning in the Limit. PhD thesis, University
of Delaware, 2009.

22 Steffen Lange and Thomas Zeugmann. Language learning in dependence on the space of hypotheses. In
Proc. of the Annual ACM Conference on Computational Learning Theory, (COLT), pages 127–136, 1993.

23 Steffen Lange and Thomas Zeugmann. Monotonic versus non-monotonic language learning. In Non-
monotonic and Inductive Logic, pages 254–269, 1993.

24 Steffen Lange and Thomas Zeugmann. Set-driven and rearrangement-independent learning of recursive
languages. Math. Syst. Theory, 29:599–634, 1996.

25 Steffen Lange, Thomas Zeugmann, and Sandra Zilles. Learning indexed families of recursive languages
from positive data: A survey. Theoretical Computer Science, 397:194–232, 2008.

26 Daniel N. Osherson, Michael Stob, and Scott Weinstein. Learning strategies. Information and Control,
53:32–51, 1982.

27 Daniel N. Osherson and Scott Weinstein. Criteria of language learning. Information and Control,
52:123–138, 1982.

28 Hartley Rogers Jr. Theory of recursive functions and effective computability. Reprinted by MIT Press,
Cambridge (MA), 1987.

29 Gisela Schäfer-Richter. Über Eingabeabhängigkeit und Komplexität von Inferenzstrategien. PhD thesis,
RWTH Aachen University, Germany, 1984.

30 Kenneth Wexler and Peter W. Culicover. Formal principles of language acquisition. MIT Press, Cambridge
(MA), 1980.

31 Rolf Wiehagen. Limes-erkennung rekursiver funktionen durch spezielle strategien. J. Inf. Process.
Cybern., 12:93–99, 1976.

32 Rolf Wiehagen. A thesis in inductive inference. In Nonmonotonic and Inductive Logic, pages 184–207,
1991.

33 Thomas Zeugmann and Steffen Lange. A guided tour across the boundaries of learning recursive
languages. In Algorithmic Learning for Knowledge-Based Systems, GOSLER Final Report, volume 961,
pages 190–258, 1995.

	1 Introduction
	2 Preliminaries
	2.1 Language Learning in the Limit
	2.2 Normals Forms

	3 Learning Indexed Families without Hypothesis Spaces
	4 Learning Indexable Classes Consistently
	5 Delayable Map for Learning Indexed Families
	6 Comparing Convergence Criteria when Learning Indexable Classes

