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In real-world machine learning (ML) pipelines, datasets are continuously growing. Models must incorporate
this new training data to improve generalization and adapt to potential distribution shifts. The cost of model
retraining is proportional to how frequently the model is retrained and how much data it is trained on, which
makes the naive approach of retraining from scratch each time impractical.

We presentModyn, a data-centric end-to-end machine learning platform.Modyn’s ML pipeline abstraction
enables users to declaratively describe policies for continuously training a model on a growing dataset.Modyn
pipelines allow users to apply data selection policies (to reduce the number of data points) and triggering
policies (to reduce the number of trainings). Modyn executes and orchestrates these continuous ML training
pipelines. The system is open-source and comes with an ecosystem of benchmark datasets, models, and
tooling. We formally discuss how to measure the performance of ML pipelines by introducing the concept of
composite models, enabling fair comparison of pipelines with different data selection and triggering policies.
We empirically analyze how various data selection and triggering policies impact model accuracy, and also
show that Modyn enables high throughput training with sample-level data selection.
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Fig. 1. Mean accuracies of 9 selection strategies (50% subset) and full data training (see Section 7.1.1).

1 INTRODUCTION
The datasets fueling today’s production machine learning (ML) models, which typically come
from a myriad of sensors or real-time user click streams, are continuously growing [12, 55, 106].
To maintain high accuracy, stale models deployed in the wild need to be retrained in order to
incorporate new data, particularly as training data may experience distribution drifts [39, 43, 44, 53,
56, 61, 85, 92, 95, 101, 110]. In practice, models may be retrained as often as every day [28], while
the volume of data that models train on can be as high as petabytes or even exabytes, depending
on the application domain [31, 124].

The cost of continuously training an ML model depends on how frequently we retrain the model
and how much data we use to train the model each time. The naive approach of retraining a model
from scratch on the entire dataset when new data becomes available is prohibitively expensive
and slow [46, 60]. To make retraining1 models practical in real use cases, we need to minimize the
frequency and the volume of data that a model is trained on, while maintaining high model quality.
For example, Figure 1 shows how various data selection policies (x-axis) proposed in ML literature
maintain model accuracy comparable to training on all data (dashed line) while training on only
50% of the yearbook image classification dataset [121]. Complementary to data selection, data
drift detection can help to trigger retraining only when data characteristics change. This can save
cost and/or increase model quality compared to fixed-interval retraining schedules.
However, finding the right data selection and triggering policies is non-trivial. While ML re-

searchers have explored how to effectively select important samples in a dataset with various
strategies [3, 4, 45, 47, 49, 62, 63, 73, 76, 79, 81, 86], it is not clear what policy to use for real-world
datasets that grow and exhibit distribution shifts over time. ML studies in this space often focus on
smaller, static datasets, such as Cifar [51] andMnist [54], and do not consider the total pipeline
cost, or they focus on one particular metric (e.g., information retention in continual learning
studies [16, 80]). While several drift detection techniques exist [34, 59, 85, 90, 105], existing studies
focus on tabular data, synthetically inject drift, and do not train neural networks in response to
drift [2, 8, 88, 89, 94, 113]. Using such techniques as triggering policies is non-trivial as it involves
tuning many hyperparameters. Most pipelines today are still human-driven [42, 95].

Furthermore, it is challenging to implement data selection policies in large-scale growing dataset
environments while maintaining high training throughput. Data ingestion is a common bottleneck
in ML training [52, 67, 124]. Applying data selection policies requires accessing individual data
samples rather than sequentially reading input data files. Such random access patterns can degrade
training throughput. In Section 7.3, we show that multiple levels of batching, parallelizing, and
prefetching of reads are essential to achieve high throughput. Such optimizations should be done
1In this paper, retraining refers to both finetuning or training from scratch.
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transparently by a platform, while ML users focus on defining the logic of ML training and data
preprocessing pipelines. While others have also acknowledged the need for a continuous training
platform that enables users to explore data selection and (re)training policies [26, 75, 96, 108],
current open-source systems only have limited support for retraining [10, 25, 65, 107]. We are not
aware of any platform supporting sample-level data selection policies.

We presentModyn, a data-centric machine learning pipeline orchestrator that addresses this gap.
To the best of our knowledge, in particular for modalities commonly used in DNN training such
as images, Modyn is the first open-source orchestrator to support data selection and retraining
decisions based on the incoming data.Modyn is an end-to-end platform that supports the entire
pipeline lifecycle, including sampling-level data selection and management, triggering model
retraining, continuously evaluating model quality, and managing model snapshots. In this paper,
we contribute the following:
(1) We design an ML pipeline abstraction, which enables users to express how to continuously

train a model on growing data. It allows declaratively specifying data-centric policies for model
retraining and training data selection, while decoupling the implementation of these policies.
We design the abstraction to capture a taxonomy of data selection and triggering policies.

(2) We buildModyn, an orchestrator that runs data-centric ML pipelines.Modyn supports various
data selection techniques while optimizing for high-throughput sample-level data selection for
multiple data formats. It also supports time-, data volume-, performance-, and data drift-based
triggering policies while managing and continuously evaluating model versions.Modyn enables
sample-level data selection with comparable throughput to sequentially ingesting data from
local storage.

(3) We formalize ML pipelines and introduce composite models which describe the performance of
a pipeline over its lifetime, and allow for a fair comparison of pipelines with different selection
and triggering policies. We build an ecosystem aroundModyn to facilitate policy exploration.
Modyn comes with web-based tooling to compare pipelines in terms of system throughput,
training cost, and model quality metrics. It also comes with a set of benchmark models and
datasets with timestamped data for policy evaluation. For a subset of the accompanying bench-
marks, we include case studies on selection and triggering policies, showing how these policies
impact pipeline performance.

2 BACKGROUND ANDMOTIVATION
In this section, we discuss the growing nature of real ML datasets (Section 2.1) and motivate the
need for a new platform (Section 2.2).

2.1 Growing Datasets & ML Perspective
Real-world ML datasets are often dynamic, in contrast to static datasets such as ImageNet [24]
that are typically used in ML research [14]. They either grow as more samples are collected (e.g.,
from continuous data sources like sensors or click streams) or shrink as data is deleted (e.g., due to
privacy reasons). In this work, we focus on the challenges of training ML models on growing data.
Why growing data matters. Incoming data captures current trends and reveals distribution

shifts that can be critical in many application domains [97, 110], like recommender systems [28, 37,
39, 120, 124] and language models [53]. For example, the GrubHub food delivery platform observed
a 20 % increase in purchase rate when their model is retrained daily rather than weekly [28]. Even
in the absence of significant distribution shifts, including additional data over time can enhance
model performance as it improves generalization. For example, Tesla continuously collects street
pictures to refine their autonomous driving models [106]. Growing data impacts training cost, as
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the cost is proportional to (i) how often the model trains and (ii) the number of data samples it
trains on [46, 60].

ML perspective on growing data.ML research so far has explored optimizing when to retrain a
model and what data to select for training as two isolated dimensions. The field of continual learning
(CL) [3, 4, 7, 26, 50, 58, 81], or incremental learning [18, 78, 117], adapts ML models to ongoing data
streams by focusing on learning new tasks, defined as groups of classes. It is unclear how these
techniques apply to real use cases, as CL research has focused on small datasets with synthetic
perturbations that lack a true notion of time. Furthermore, both the focus on learning classes
over time instead of adapting to distribution shift and the common assumption of limited storage
are not realistic, as acknowledged by recent works in the CL community [32, 80]. Data selection
policies outside of CL focus on selecting subsets of static datasets [47, 62, 63]. All techniques require
sample-level data access on the dataset.
While there is work on detecting distribution shift [55, 85, 105], these papers often focus on

theoretical aspects and do not actually train models [2, 8, 34, 57, 90], i.e., they only compare drift
scores. Notably, Werner et al. [113] train random forests on tabular datasets, and Yuan et al. [122]
consider synthetically perturbed variations of the MNIST dataset from continual learning. To the
best of our knowledge, no paper explored applying drift detection techniques to training large
neural networks on modalities such as images and text from non-synthetic benchmarks.

2.2 Platform Support
Managing when to retrain models and on what data to train models in large-scale growing data
environments is challenging. It requires efficiently orchestrating continuous training pipelines
with configurable triggers and fast access to arbitrary sets of data samples determined by a data
selection policy. Model training orchestration and sample-level data fetching should be transparently
optimized by a platform in order to help ML researchers focus on policy exploration and to help ML
practitioners reliably deploy ML pipelines in production environments. Furthermore, drift detection
techniques need to be closely embedded into the data flow, since they typically need to access the
previously trained models and the data stream.

Current ML platforms do not address these requirements. The majority of ML training platforms,
such as Weights & Biases [13] or MLFlow [20], are tailored more towards experiment tracking than
continuous retraining. While a few (often commercial) platforms like NeptuneAI [70], Amazon
SageMaker [5], Continuum [107], or Tensorflow TFX [65] have partial retraining support, deploying
continuous retraining still requires a lot of manual plumbing [10, 75, 95, 108]. Commonly, platforms
allow for the performance of the deployed model to trigger a retraining (e.g., SageMaker or tf-
serving [74]). Notably, Hopsworks [41] supports drift detection on individual features of tabular
data, and SageMaker’s Model Monitor allows for the collection of drift metrics on tabular data
using the Deequ library [93]. Images and other modalities are explicitly not supported currently.
Especially for modalities commonly used in DNN training (images and text), data-centric decision
making on when and what data to train on is, to the best of our knowledge, not supported by any
available open-source training platform. Platforms such as Ekya [12], which optimizes retraining for
vision models on edge devices, and Ekko [98], which optimizes model updates for recommendation
systems, cater to specific use cases. The aforementioned platforms view the datasets as a big blob
of data instead of indexing individual samples.

3 MODELING DYNAMIC ML PIPELINES
Continuous ML pipelines regularly run model trainings on an incoming stream of data 𝑆 with a
discrete time clock. The data arrives in batches 𝑆𝑖 ⊂ 𝑆 , i.e., sequences of new samples, where batch 𝑡
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is given as 𝑆𝑡 = (𝑠1, . . . , 𝑠𝑛𝑡 ). Each sample 𝑠𝑖 ∈ 𝑆𝑡 comprises a unique identifier, a label, a timestamp,
other metadata, and a data payload.
Triggering. The triggering policy decides whether to trigger a new training2. We model a

triggering policy as a function 𝜋 : P (𝑆) → ⋃∞
𝑛=0 P ([1, . . . , 𝑛]). Given a batch 𝑆𝑡 , it determines

which samples 𝑠𝑖 ∈ 𝑆𝑡 trigger a new training process. Formally, it outputs a sequence 𝜋 (𝑆𝑡 ) =

(𝑖 ∈ [1 . . . 𝑛𝑡 ] | 𝑠𝑖 ∈ 𝑆𝑡 causes trigger). The triggering policy can be stateful and utilize the observed
history of samples, properties of them or the pipeline, to come to a triggering decision. Conceptually,
the triggering policy decides on a per-sample basis. For efficiency, our implementation evaluates
multiple samples simultaneously in batches, while keeping the semantics of per-sample decision-
making. Note that triggering on each new data sample is impractical in production, as each newly
trained model typically needs to undergo a set of extensive deployment checks, which are expensive
to run at high frequency [43, 95].
Data selection. On each trigger, the selection policy chooses which samples to train on. Let

𝑠𝑘 ∈ 𝑆𝑡 cause the overall 𝑟 -th retraining trigger. The observed data until trigger 𝑟 is Dtot
𝑟 =

{𝑠𝑖 ∈ 𝑆𝑡 | 𝑖 ≤ 𝑘} ∪ ⋃
𝑡 ′<𝑡 set (𝑆𝑡 ′ ). A data selection policy is a function 𝜉𝑟 : Dtot

𝑟 → R |Dtot
𝑟 | that

assigns each item in the total observed data a weight. Thereby, the function defines the 𝑟 -th trigger
training set D𝑟 ⊂ Dtot

𝑟 × R+. An item is included if its weight is greater than 0. The data selection
policy selects from all previously seen data samples, i.e., they can come from any 𝑆𝑡 ′ with 𝑡 ′ < 𝑡 ,
and all samples in 𝑆𝑡 until 𝑠𝑘 . The sample weights can be used to prioritize samples by multiplying
their gradients with the weights during backpropagation. The trigger training set is a subset of all
data points seen so far, so it may, but does not have to, contain samples from previous triggers.

3.1 Evaluating and comparing pipelines
To compare ML pipelines, we first need to define how to quantify the performance and cost of a
pipeline. Evaluating the model quality and training cost of an ML pipeline on a growing dataset is
more complex than evaluating a single model training on a static dataset. Two challenges arise.
First, ML pipelines train multiple models instead of a single one to deal with the growing data

that might exhibit distribution shift. On each retraining trigger 𝑟 we train a new model𝑚𝑟 . For
a pipeline 𝑃 , let M𝑃 denote the sequence of all models trained during pipeline execution. Each
𝑚𝑟 ∈ M𝑃 is a 4-tuple containing its model weights𝑤𝑟 , the data it was trained on D𝑟 , and the start
timestamp 𝑡𝑠𝑟 and end timestamp 𝑡𝑒𝑟 of the training data, i.e.,𝑚𝑟 =

〈
𝑤𝑟 ,D𝑟 , 𝑡

𝑠
𝑟 , 𝑡

𝑒
𝑟

〉
. We should not

just evaluate a single model from M𝑃 , e.g., the last one, on the entire dataset since the model is
trained on one particular distribution. Instead, we need to consider multiple models.

Second, to understand how a model’s performance changes over time, we need to define windows
over the evaluation data, as discussed by Shankar et al. [96]. Evaluation data should be separate from
training data, e.g., by partitioning the stream 𝑆 . These windows are temporal slices of the dataset
on which we then calculate a quality metric per model. Let 𝑃1 and 𝑃2 be pipelines with different
triggering policies 𝜋1 and 𝜋2 on the same stream of data.M𝑃1 andM𝑃2 contain different models,
in particular with different timestamps. The intuitive solution of defining evaluation windows
matching the training intervals of the models, i.e., each model𝑚𝑟 defines an evaluation window
from 𝑡𝑠𝑟 to 𝑡𝑒𝑟 , is not fair across pipelines. Hence, we first need to decouple determining evaluation
intervals from triggering and then define which model to use for which window.
We define an evaluation interval as a 3-tuple ⟨𝜏𝑠 , 𝜏𝑎, 𝜏𝑒⟩. 𝜏𝑠 and 𝜏𝑒 define the start and end of

the range from which we consider evaluation data. 𝜏𝑎 defines the anchor point of the interval,
which serves as a reference timestamp that we use in further definitions. Typically, 𝜏𝑎 = 𝜏𝑠 or
𝜏𝑎 = (𝜏𝑠 + 𝜏𝑒 ) /2. We define an interval generation function 𝜑 as a procedure that generates intervals

2We use the terms training and retraining interchangeably.
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training interval evaluation interval trigger / model training
(𝑚𝑖 , 𝜑 𝑗 ) ∈ M × 𝜑 currently active model for 𝜑 𝑗 𝜏𝑎 (𝑎𝑛𝑐ℎ𝑜𝑟 )

2012 2013 2014 2015 2016 2017
𝑇1 𝑟1 at 𝑡𝑒1

𝑇2 𝑟2 at 𝑡𝑒2
𝑇3 𝑟3 at 𝑡𝑒3

𝑇4 𝑟4 at 𝑡𝑒4𝜑1
𝑇5 𝑟5 at 𝑡𝑒5𝜑2

𝜑3
𝜑4

𝜑5
𝜑6

model𝑚1 𝑚2 𝑚3 𝑚4 𝑚5

Fig. 2. Visualization of finding the currently active model.

on the evaluation dataset, i.e., it outputs a sequence of evaluation intervals
(〈
𝜏𝑠1, 𝜏

𝑎
1 , 𝜏

𝑒
1
〉
, . . .

)
. We

also use 𝜑 to denote this sequence. The generated intervals can, e.g., be fixed-length sliding- or
tumbling windows. For any metric 𝜎 (e.g., accuracy) and a model𝑚𝑥 ∈ M𝑃 , let 𝜎 (𝑚𝑥 , 𝜑𝑖 ) denote
the score of model 𝑚𝑥 on data with timestamps in the 𝑖-th evaluation interval. We define the
evaluation matrix𝑚𝜎,𝑃 ∈ R |M𝑃 |× |𝜑 | where, for all 𝑖 ≤ |M𝑃 | and 𝑗 ≤ |𝜑 |,𝑚𝜎,𝑃 [𝑖, 𝑗] = 𝜎

(
𝑚𝑖 , 𝜑 𝑗

)
.

Each model is evaluated on each window.
From matrices to sequence. Currently, each pipeline is associated with a 2-dimensional

evaluation matrix (models and intervals). When comparing multiple pipelines, we have to consider
another dimension for the pipelines themselves. To reduce the number of dimensions, we propose
to define a composite model per pipeline. Formally, the composite model is a partial mapping
𝜇𝑃 : 𝜑 → M𝑝 . This allows us to condense the accuracy matrix𝑚𝜎,𝑃 ∈ R |M𝑃 |× |𝜑 | into a sequence of
evaluation results Λ𝜎,𝑃 =

(
𝑚𝜎,𝑃 [𝜇𝑃 (𝑖) , 𝑖] | 𝑖 ≤ |𝜑 |

)
∈ R |𝜑 | . This sequence represents the temporal

performance of a pipeline. We call it the composite model performance, though the composite
model is formally a mapping.
We propose and focus on two variants of composite models. In the currently active composite

model, every evaluation window uses the most recent model that has completed training prior to the
anchor of the evaluation interval, i.e., 𝜇𝑎𝑐𝑡𝑖𝑣𝑒

𝑃
(𝜑𝑖 ) = argmax𝑚𝑥 ∈M𝑃

{𝑡𝑒𝑥 | 𝑚𝑥 =
〈
𝑤𝑥 ,D𝑥 , 𝑡

𝑠
𝑥 , 𝑡

𝑒
𝑥

〉
∧𝑡𝑒𝑥 ≤

𝜏𝑎𝑖 }. Intervals whose anchor is before the first model, i.e., when no model training has finished
before the evaluation data comes, do not have a currently active model. It is a modeling decision of
the interval generation function whether the anchor point lies on the left boundary of the interval,
or, e.g., in the center, to allow for a mix of out-of-distribution and in-distribution data. Figure 2
visualizes this with a Gantt chart of the model and evaluation intervals. In this example, we set
𝜏𝑎 = 𝜏𝑠 . The training data intervals end with a trigger, indicated by the blue diamond. Conceptually,
each evaluation interval searches (arrows to the left) for the first model that has finished training
before its anchor at the beginning of the box. The model associated with the trigger belonging to
the dashed vertical line is marked as currently active for the evaluation interval, indicated by the
orange diamond. A model can be active for several (𝑟3) or no intervals (𝑟5).

The currently trained composite model is the model following the currently active model. Let 𝑖 be
the index such that for the 𝑗-th interval 𝜇𝑎𝑐𝑡𝑖𝑣𝑒

𝑃
(𝜑 𝑗 ) =𝑚𝑖 . We define 𝜇𝑡𝑟𝑎𝑖𝑛

𝑃
(𝜑 𝑗 ) =𝑚min(𝑖+1, |M𝑃 | ) . For

the edge casewhen the currently activemodel is undefined, we set themost recentmodel as currently
trained. The currently trained model potentially benefits from training on data distributions similar
to those in the evaluation set. We will see an example of the difference between 𝜇𝑡𝑟𝑎𝑖𝑛

𝑃
and 𝜇𝑎𝑐𝑡𝑖𝑣𝑒

𝑃
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in Section 7. These definitions emphasize the current performance of a pipeline. They might not
capture other aspects such as retention of previous knowledge.
Further dimensionality reduction. For a comparative analysis of pipelines, plotting the

temporal accuracy of composite models, i.e., plotting Λ𝜎,𝑃 , may provide visual insights. To distill
this information into a single metric, the series Λ𝜎,𝑃 ∈ R |𝜑 | (the composite model accuracy) can be
averaged into a pipeline score Σ𝜎,𝑃 ∈ R to obtain an indication of the general pipeline performance
over time. This is how we calculated the mean in Figure 1 to compare pipeline performance.
Furthermore, this scoring is useful for ranking pipelines in an AutoML setting [40, 89].
Cost trade-off and pipeline comparison. Let𝒫 be a set of pipelines, each assigned a fixed

cost 𝑃𝑐 . Costs can be measured by the number of triggers, the number of samples trained on, or
wall clock run time. The number of triggers is only fair when all pipelines use the same selection
policy on only the new data since the last trigger as in this case each sample from the entire dataset
is trained on at most once. The number of samples is fair across different selection policies but
disregards overheads such as the cost of the triggering and selection policies. Wall clock time covers
everything, but requires pipelines to be run on isolated machines.
Having assigned a cost, we can build the cost-accuracy feasible set F𝒫 =

{〈
Σ𝜎,𝑃 , 𝑃𝑐

〉
| 𝑃 ∈ 𝒫

}
.

There might be several pareto-optimal pipelines. For visually comparing pipelines, we can plot
this feasible set and get an understanding of how different pipelines perform with respect to the
tradeoff between training cost and predictive performance.

4 MODYN’S DESIGN
Modyn is designed to implement the pipeline model described in Section 3. Hence, the core unit of
execution inModyn is a pipeline. Users declaratively specify the pipeline which allows to decouple
the pipeline policy from how it gets executed and lets users focus on model engineering. Still,
Modyn allows users to add new models and policies as Python modules and offers abstractions to
support this (Section 5).

Modyn is designed to fill the gap identified in Section 2.2. To allow users to control which
individual data samples to access for training, Modyn’s storage component assigns each sample a
unique ID and associates metadata with each ID. Instead of seeing the dataset as a blob of data,
Modyn offers a get_sample_by_id interface to fetch data according to the selection policy during
training. Next, to support the rich landscape of selection and triggering policies in its declarative
interface, Modyn introduces a taxonomy of these policies (Section 5) and implements abstractions
to apply these techniques to common DNN data modalities like text or images. Furthermore, we
design Modyn’s rich evaluation infrastructure to support the ideas outlined in Section 3.
Figure 3 shows Modyn’s components and the basic flow of pipeline execution.Modyn ingests

data from a data source, such as stream processing engines (e.g., Flink [17]) or batch processing
frameworks (e.g., Spark [123]). We assume that expensive preprocessing operations, e.g., filtering
and downscaling a stream of images, happen offline, i.e., before ingestion into Modyn. Online ML
preprocessing (e.g., image augmentation) happens withinModyn. While data preprocessing for ML
provides challenges in itself [119], existing work is addressing those challenges [25, 33, 92].Modyn
is positioned between the preprocessing of the data and the serving of models. Modyn expects
a labeled input data stream. Such labels can be either obtained automatically (e.g., track which
advertisements a user clicked on) or from human-in-the-loop annotation systems [116].Modyn
outputs a stream of trained models that can then be deployed, using tools like TorchServe [84],
BentoML [11], or Triton Inference Server [71].
Overview of control flow and data flow. The user submits a pipeline via Modyn’s CLI to

the supervisor 0 , which implements the triggering policy and orchestrates the execution. Modyn
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Fig. 3. Modyn’s system design.

stores data samples streaming in from external sources in its storage, which assigns a unique key to
each sample. The data storage component informs the supervisor about new samples by their key 1 .
The supervisor checks whether any data point in the incoming batch causes a trigger and forwards
potential triggers and the sample keys to the selector 2 , which implements the data selection
policy. Upon trigger, the supervisor contacts the trainer server to start a training process 3 . The
trainer server requests the trigger training set (keys and weights to train on) from the selector 4 .
Then, it loads the actual data from the storage 5 and, depending on the configuration, also the
previous model from the model storage. The trainer server then runs a training according to the
configuration. The trained model is then stored in the model storage component 6 . The supervisor
can send an evaluation request to the evaluator 7 , which receives the newly trained model from
model storage 8 , evaluates it and returns the results 9 . The supervisor can also receive the new
model for new triggering decisions 10 . Finally, the model can be deployed.
Example pipeline. Figure 4 shows a declaratively-specifiedModyn pipeline. At minimum, a

description comprises (1) the model specification, (2) the training dataset and a corresponding bytes
parser function that defines how to convert raw sample bytes to model input, (3) the triggering
policy, (4) the data selection policy, (5) training hyperparameters such as the the learning rate
and batch size, (6) training configuration such as data processing workers and number of GPUs,
and (7) the model storage policy, i.e., a definition how the models are compressed and stored. A
training may involve fine-tuning a model or training a model from scratch with randomly initialized
weights; this is a configuration parameter in the triggering policy. The very first training can run
on a randomly initialized or externally provided model.

5 IMPLEMENTATION
We describe the supervisor and triggering policies (Section 5.1), the selector and data selection
policies (Section 5.2), data retrieval (Section 5.3), and the remaining components (Section 5.4). We
buildModyn with the goal of providing an easy-to-use, extensible, and efficient execution platform
for data-centric ML pipelines. We aim to build an ecosystem around Modyn to facilitate policy
exploration in practical use cases of ML training in growing data environments.
To balance performance and ease-of-use, Modyn components are either written in C++ (e.g.,

storage service), purely in Python (e.g., trainer service), or Python with C++ extensions (e.g.,
selector service). While code on the hot path of data fetching is written in C++ to avoid stalls, the
pluggable algorithm modules are written in Python. Having a clean Python interface allows ML
researchers to implement policies in a familiar language without worrying about systems aspects.
For compatibility, we use existing tooling like PyTorch where possible.
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1 model:
2 id: ResNet18
3 config:
4 num_classes: 42
5 data:
6 dataset_id: mnist
7 transformations: ["transforms.Normalize(...)"]
8 bytes_parser_function: |
9 def bytes_parser_function(data: memoryview) -> Image:
10 return Image.open(io.BytesIO(data)).convert("RGB")
11 trigger:
12 id: DataAmountTrigger
13 num_samples: 100
14 training:
15 use_previous_model: True
16 batch_size: 1234
17 optimizers: ...
18 optimization_criterion:
19 name: "CrossEntropyLoss"
20 selection_strategy:
21 name: "CoresetStrategy"
22 storage_backend: "database"
23 tail_triggers: 0
24 presampling_config: ...
25 downsampling_config: ...
26 model_storage:
27 full_model_strategy:
28 name: "PyTorchFullModel"
29 incremental_model_strategy:
30 name: "WeightsDifference"
31 evaluation: ...

Fig. 4. Excerpt from an exampleModyn pipeline.

Modyn uses gRPC and FTP for data and control flow, and supports Docker Compose for deploy-
ment. The codebase, totaling ca. 20 000 lines of Python and 2 500 lines of C++ (excluding tests),
is publicly accessible3, and undergoes rigorous unit and integration testing, as well as linting,
establishing it as more than a research prototype.
To overcome the limitations imposed by the Global Interpreter Lock (GIL) in Python, our im-

plementation employs a hybrid processing and threading approach. It utilizes a gRPC ThreadPool
and multiprocessing.Processes, leveraging the SO_REUSEPORT socket option. This combination
enables the system to handle multiple gRPC requests concurrently, achieving true parallelism
despite the GIL constraints.

5.1 Supervisor
The supervisor orchestrates the execution of pipelines. Pipelines are submitted viaModyn’s CLI. The
CLI is the interface between supervisor and user.Modyn uses Pydantic models [83] to guide users in
specifying their pipelines. For each submitted pipeline, the supervisor spawns a PipelineExecutor,
which implements a state machine following the control flow outlined in Section 4. The client
frequently polls the supervisor for the current status and displays the current pipeline stage and
training progress.
Triggering policies. During execution, the supervisor decides to trigger using a triggering

policy.Modyn currently supports amount-, time-, performance-, and drift-based triggering policies.
Amount-based triggers fire every 𝑛 data points, while time-based triggers fire after a time interval
has passed. Performance-based triggers trigger when the accuracy degrades. They require labels
which might arrive late in practice [97]. Drift triggers, however, work unsupervised and detect

3Available at https://github.com/eth-easl/modyn.
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covariate shift, i.e., they compare the distribution of the incoming data to some reference data. We
leverage the evidently [30] and alibi-detect [109] libraries for calculating similarity metrics and
hypothesis testing.
Data drift variants. For unstructured data such as images, we transform it into a latent em-

bedding space, and optionally project it to lower dimensionality, e.g., using PCA.Modyn uses the
most recent model of the pipeline to generate embeddings. Modyn builds up a sliding window
of current data and reference data (current data window at the last trigger). In a defined interval,
a similarity metric such as MMD between the two windows is obtained. Based on the similarity
metric, we need to make a binary decision about whether there is drift between the reference and
current data, i.e., whether we trigger.Modyn supports threshold-based decisions, i.e., we trigger
when the metric is higher than a threshold. As this threshold needs to be tuned for each dataset
and metric, Modyn supports dynamic decision making (AutoDrift). It keeps track of a window of
previously observed drift scores and triggers when a new drift score is in a configurable percentile
of these scores as a simple outlier detection.
Similarity metrics. While tabular data as used in previous work [88, 94, 113] can be used

directly, for images and text,Modyn generates embeddings as dense latent representations, and
calculates drift metrics on those embeddings. The embedding dimensions become features as in
the tabular data domain. We find that some distance metrics, such as the Kolmogorov–Smirnov
or Hellinger distance [27], are commonly used for univariate distributions. In univariate drift
detection, we derive one distance metric per feature, e.g., for 512-dimensional embeddings, we
obtain 512 distance values that need to be reduced into a scalar. Multivariate extensions or natively
multivariate metrics provide a scalar distance value, even for multivariate distributions. We focus on
the multivariate MMD metric since we did not find readily available multivariate implementations
of other metrics. Additionally, it has not been explored how to best reduce multiple univariate
metrics into a scalar value, how to decide whether the data has drifted, and MMD performed best
in initial experiments.

Open questions. Using drift detection on unstructured data such as images is an active area of
research. First, the impact of the embedding space, i.e., which model is used to generate embeddings,
has not been explored. Second, it has not been studied what is a sensible interval to run detection,
what metric to choose in which scenarios, and how big the windows should be. Last, it is not clear
what is the best way to make the binary triggering decision, and it likely depends on the metric,
dataset, embeddings, etc. Note that our goal is to demonstrate how Modyn enables the use and
exploration of different triggering policies rather than advocating for a particular policy. We are
actively exploring these questions and discuss the first results in Section 7.2.
Execution modes. Modyn advocates the principle of what you evaluate is what you deploy.

Managing separate codebases for research and production is error-prone. Hence, any pipeline can
be executed in either experiment mode or production mode. In production mode, the data storage
informs the supervisor when new data points arrive. In experiment mode, the data storage simulates
new data points streaming in by announcing existing data points as “new” to the supervisor. The
experiment mode can be used to (re)play traces and compare how policies perform given the same
environment. The insights gained from these experiments can then be used to find a configuration
for production.

5.2 Selector
The selector implements data selection policies, which generate the trigger training set D𝑟 upon
the 𝑟 -th trigger per pipeline.
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Fig. 5. Data selection flow in Modyn.

5.2.1 Selection policies. A selection policy defines what data to train a model on upon trigger.
Every selection policy has a window upon the past data, i.e., a pool of data we could train on.
This window can be infinite (“retrain” on all past data), just include the data since the last trigger
(“finetune” on new data), or include all data up to 𝑛 previous triggers. In order to either reduce the
amount of data that we train on or increase information retention, we can then apply selection
algorithms on this window of data. In the following, we discuss a taxonomy of selection policies.

Presampling and downsampling. We identify two types of selection algorithms. Presampling
algorithms do not require any information from the model forward pass and are implemented at
the selector. Examples include ingesting older samples to increase information retention, sampling
in a class-balanced fashion, or use-case specific sampling (e.g., increasing the weight of pictures at
night for autonomous driving pipelines).
Downsamplers are general-purpose techniques which leverage information from the model

forward pass to pick the best samples to use for the backward pass [22, 47, 63, 79]. Downsampling
happens at the trainer server. For example, the DLIS policy [47] samples data points based on the
gradient norm obtained during the forward pass. Any downsampler can be combined with an
offline or online presampling policy.
Offline/online presampling. Any presampling policy is offline or online. Offline policies

maintain state by storing all samples during a trigger and running the actual selection on trigger.
For example, a strategy sampling class-balanced from the data window requires storing all data
first and only samples on trigger after determining the available classes. Online policies perform
the sampling directly as data is received. Examples for online policies include continual learning
algorithms such as GDumb [81], CLiB [50], and GSS [4].
Supported policies. Currently, for presampling, Modyn supports class-balanced sampling

(similar to GDumb [81]), sampling uniformly at random, and trigger-balanced sampling. For down-
sampling,Modyn supports RS2 [73], loss sampling [47], DLIS [47], uncertainty downsampling [22],
CRAIG [63], and GradMatch [48]. It also implements a warmup period of not using sampling for
the first triggers to improve upon the initial model more quickly.

5.2.2 Implementation of policies. Presampling and downsampling policies are implemented as
Python classes, each category sharing its own common interface.Modyn provides infrastructure,
e.g., for storing state, to help engineers and researchers port algorithms. The overall flow of data
selection is shown in Figure 5, which we detail in the following paragraphs. When informed about
new samples, the selection policy updates its state using a metadata backend module provided by
the selector. This state is used to calculate the set D𝑟 on trigger 𝑟 . This set is then stored on disk
using an extension called TriggerSampleStorage (Section 5.3).

, Vol. 1, No. 1, Article . Publication date: November 2025.



12 Böther et al.

Backends for presampling. For implementing presampling strategies,Modyn provides two
backends that share an interface to store the state of the sampling strategy. The first backend
is the Postgres backend, which persists the samples to a Postgres table [102]. The advantage of
this backend is the flexibility for implementing selection policies, since many policies can be
expressed using SQL statements. We use SQLAlchemy [9] to allow for easy querying of data.
Modyn provides query boilerplates using inheritance hierarchies, e.g., in order to implement a
random sampling balanced across some parameter such as trigger or label, the developer inherits
from the AbstractBalancedStrategy and specifies the column to balance on. The disadvantage of
the Postgres backend is the slow insertion speed. Every sample has to be written into the database.
We optimize the ingestion with Postgres’ table partitioning mechanism. We partition the state
table first by pipeline, then by trigger, and then round-robin with a modulus of 16. This avoids the
degrading of insertion performance with growing number of triggers, since every trigger defines a
new physical table. In order to further optimize the insertion speed, we use SQL bulk insertion and
run several insertion threads for new batches of incoming keys.
For datasets with many samples, e.g., recommendation system datasets, using Postgres can be

very expensive. We observe maximum insertion speeds of around 100 000 insertions/second. For
simple strategies not requiring complex SQL queries (e.g., train on all the data since the last trigger),
or if performance is key,Modyn offers a local backend. This is a C++ extension that writes data
multithreadedly to a local disk, such as a high performance NVMe drive. These binary files are
written and read avoiding unnecessary memory copies. Strategies such as training on all data,
uniform presampling, or mixing old and new data can be implemented easily on this backend,
trading off ease of implementation for speed. Each workload has different requirements andModyn
provides building blocks for these use cases.
Implementing downsamplers. Downsampling policies cannot be executed at the selector

and need support from the trainer server. Modyn’s training loop has a component which executes
the downsampling policy specified in the pipeline. As shown in Figure 5, the presampled trigger
training set is transferred to the trainer server, where it is then downsampled.

Analogous to offline versus online presampling, downsamplers can be run in either sample-then-
batch (StB) or batch-then-sample (BtS) mode. Some downsamplers like RHO-LOSS [62] explicitly
are proposed with BtS or StB mode, and others like DLIS [47] can be used in both modes. In BtS, the
training loop runs inference on a batch and then selects a subset of that batch. This is repeated until
we accumulate a new batch of the original batch size, on which we then perform a backward pass.
In StB mode, the training loop starts with a sampling phase in which it continuously informs the
downsampler about the forward pass, allowing the downsampler to build up state for all samples.
Once this state is complete, it generates the downsampled dataset, and we run training on these keys.
This sampling phase can be performed every training epoch or less often. Both StB and BtS mode
are abstracted such that engineers just have to implement one version of the downsampling policy.
While there can be multiple epochs of training per trigger,Modyn applies the budget constraint
per epoch. For example, when we have 1 000 samples, a 10 % budget, and 10 epochs per trigger, we
train for 10 epochs of 100 samples each, instead of a single epoch of 1 000 samples. Maintaining the
epoch boundary allows, e.g., consistent setups for learning rate scheduling.

5.3 Fast Data Retrieval
Modyn supports different data selection policies, which means that the trigger training set is an
arbitrary collection of previously stored samples. Regardless of the selection policy, the result is a list
of training items, i.e., IDs of samples, to train on. This is a shift in architecture from traditional ML
deployments, where the training data is typically a big chunk of data that can be read sequentially.
Instead,Modyn supports sample-level data selection, i.e., retrieving samples based on their identifier.
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Fig. 6. The architecture of the OnlineDataset.

For big datasets with potentially billions of small samples like in recommendation systems, this can
lead to data stalls during training. In this subsection, we describe how we engineerModyn to avoid
data stalls while supporting sample-level data selection. We first describe the storage component
(Section 5.3.1). Then we describe the OnlineDataset abstraction that loads keys from the selector,
payloads from storage, parses the bytes, and returns tensors into the training loop (Section 5.3.2).
We furthermore explain how the selector quickly returns the list of keys (Section 5.3.3), and how,
given a list of keys, the storage quickly returns the requested data (Section 5.3.4).

5.3.1 Data Storage. The storage is entirely written in C++ as we found the data wrangling to be
particularly expensive in Python. A Postgres database is used to keep track of all available samples.
Each ingested file can contain one or more samples, e.g., a JPEG file contains exactly one sample,
while a CSV file contains potentially hundreds of thousands of samples. When the component
encounters a new file, it extracts all the samples in that file and inserts the file, the sample IDs, and
the labels into the database. The storage makes use of FileSystemWrappers which abstract I/O
operations such as reading byte streams from files. Currently, Modyn implements a file system
wrapper for the local file system, but this can be easily extended to support cloud file systems
like S3. The storage then uses FileWrappers which abstract how to extract individual samples
and labels from files. Examples include the CSVFileWrapper for variable-length CSV data, the
BinaryFileWrapper for fixed-size columnar data, often used in recommendation systems training,
and the SingleSampleFileWrapper for files containing exactly one sample, such as images.
The C++ implementation uses SOCI [99] to operate on the Postgres database. To optimize the

ingestion and query performance, we partition the tables. Since for datasets with billions of samples,
even SQL bulk insertion is too slow, we use the Postgres internal COPY command and stream the
data over the raw connection.

5.3.2 The OnlineDataset. The OnlineDataset abstracts away the interaction with the different
gRPC components from the training loop. The training loop (Section 5.4) uses a standard PyTorch
DataLoader to fetch batches to train on. It is not aware of the ongoing network communication.
This new abstraction is necessary due to Modyn’s sample-level data selection. We cannot just
load a big chunk of data and train on it. Instead, we have to load the data according to the list
of keys in the trigger training set. The PyTorch DataLoader uses multiple workers. We split the
trigger training set across these workers. The trigger training set consists of fixed-size partitions
(Section 5.3.3). Each worker gets an equal share of each partition. The data loader fetches batches
from the workers in a round-robin fashion.
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In order to avoid data stalls when the data loader requests data, each worker (or dataset instance)
implements a prefetching mechanism. This architecture is depicted in Figure 6. Each worker has a
partition buffer of a configurable size. Upon creation, a worker spawns a configurable number of
prefetching threads that issue gRPC requests. The size of the buffer defines how many partitions we
prefetch overall, while the number of threads defines how many partitions we prefetch in parallel.
To fetch a partition, we first obtain a list of keys from the selector, and then ask the storage for the
payloads corresponding to these keys. The storage uses gRPC streaming to transfer the payloads to
the workers.
As soon as data is available in the buffer, the main thread of the worker fetches the payload,

applies transformations, and yields it to the data loader. This is important, since waiting for a
partition to finish transferring would make the batch latency depend on partition size. The only
exception is when if shuffling is enabled, i.e., we need to shuffle the samples in each partition
and the order of partitions, as we need to alter the sample order. The first transformation always
is a user-defined bytes parser function defining how to transform the bytes of the payload to a
tensor, e.g., by decoding the bytes of a JPEG image or decoding a UTF-8 string. Afterwards, other
transformations are applied as defined by the pipeline, such as image augmentations or tokenization.

5.3.3 Data partitioning. We need to retrieve the trigger training set, i.e., the keys to train on, as
fast as possible. Instead of relying on a database, we persist the fixed trigger training set after
presampling to disk using the TriggerSampleStorage (TSS). The TSS is a fast C++ extension that
persists the list of keys and weights (c.f. Section 3) output by the presampling strategy to disk. The
TSS uses the same binary file format as the local backend.

Writing to disk. The selection strategy does not pass all keys and weights at once to the TSS.
Instead, it passes the keys as multiple partitions. Each partition is a fixed-size set of keys. For
example, if the trigger training set consists of 1 000 keys and the partition size is 100, the strategy
will pass 10 partitions to the TSS. This avoids high memory utilization by limiting the amount
of keys loaded at once. Furthermore, the partitions provide a fixed-size unit of data transfer for
the trainer server. The backends provide support for partitioning, i.e., limiting the memory usage.
For the Postgres backend, we use Postgres’ server-side cursors. For the local backend, we read the
corresponding data via offsets. When the TSS writes the final partition to disk, 𝑛 threads (within
the C++ extension) write the keys and weights of the partition to disk in parallel.
Retrieving keys.When retrieving partition data for a worker, we iterate over all files for this

partition. The requesting worker ID and the number of total samples correspond to a list of samples
for this worker. However, as the number of dataloader workers does not necessarily match the
number of threads we used to persist the training set to disk, we have to potentially parse subparts
of files and correctly and efficiently assemble each worker’s share of a partition. This is hidden in
the C++ extension and only the final list of keys is returned.

5.3.4 Storage data retrieval. What makes the storage challenging is that it can receive requests
with arbitrary sets of sample keys. When samples are requested, they are distributed across a set
of files, and each may be residing at arbitrary locations within those files. The storage needs to
efficiently build a buffer of data that makes it look as if the data came from one continuous file that
contained all requested samples.
When a worker sends a list of keys to the storage for retrieval, the storage partitions this list

into 𝑛 ≥ 1 parts to parallelize the retrieval from disk. Then, each thread obtains labels and a source
file for each sample from Postgres, grouped by file. For each file, it instantiates a FileWrapper and
extracts all samples in that file into a send buffer. When that buffer is full, or once all files have
been iterated through, the thread emits the buffer to the worker. Besides parallelization, major
speed gains for each thread stem from optimized FileWrapper implementations. For example, the
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BinaryFileWrapper has an optimized bytes-to-int parsing function based on the endianness the
file was written with, and operates on std::ifstreams to not load the entire file into memory.

5.4 Other Components
5.4.1 Trainer Server. The trainer server spins up trainers when requested, which execute a general-
purpose training loop. Modyn currently implements a PyTorch-based trainer, but its design is
agnostic to the ML framework. The trainer supports a variety of features like mixed-precision
training or learning rate schedulers with correct support for data selection [73]. Modyn comes
with some models (e.g., ResNets [38], DLRM [69, 72], and transformers [115]) and other models
can be added easily. The trainer also performs online featurization, such as image augmentation.

5.4.2 Model Storage. This component is responsible for model storage and retrieval. It supports
full model and incremental compression policies. The full model policy defines how to compress
the entire model such that it can be restored from just the file itself, analogous to an I-frame in
video encoding. Furthermore, the model storage can employ an incremental policy, which activates
a configurable number of times between full model steps. In this mode, Modyn stores just the
delta from the base model based on a specified difference operator. This is similar to a P-frame
in video encoding. For full model policies, the model storage currently supports both the native
PyTorch format and a custom, stripped binary storage format, with or without zip compression.
For incremental policies, it currently supports an xor and subtraction based difference operator.
Model compression over time is an active area of research [36, 103].

5.4.3 Evaluator. Each model trained during a pipeline can be evaluated on several evaluation
intervals formultiple evaluationmetrics.Modyn’s evaluator implements various interval generation
functions 𝜑 , e.g., tumbling- or sliding windows. It also supports both decomposable (e.g., accuracy)
and holistic metrics (e.g., ROC-AUC).

6 BENCHMARK SUITE
A major hurdle for research on growing datasets is the scarcity of publicly accessible datasets that
encapsulate temporal dynamics and distribution shifts. Modyn incorporates a benchmark suite
that curates datasets, pipeline configurations, and models to run pipelines with. It comes with
the necessary tooling for making them available on the user’s machine as some datasets involve
post-processing and metadata scraping. The suite includes:
(1) TheWild-Time benchmarking suite [121]: A compilation of five datasets, ranging from small

to medium in size, each exhibiting distribution shifts.
(2) Kaggle arXiv and HuffPost datasets: The arXiv and HuffPost datasets from Wild-Time only

have coarse-grained timestamps on a year resolution and have been filtered by unclear criteria.
Modyn provides tooling to generate full, high resolution versions using the source data from
Kaggle [6, 64].

(3) The Criteo 1 TB dataset [23]: The Criteo click stream dataset for recommendation systems
training provides user data over 24 days, with roughly 180million samples per day.

(4) The CGLM dataset(s) [80]: The paper on CGLM classifies images from landmarks on Wikipedia
and uses the upload timestamps. Since the original data is not accessible,Modyn provides an
open-source reproducible script and pre-scraped metadata to generate different versions of the
CGLM dataset, e.g., by using the clean or non-clean and hierchical or non-hierarchical version
of the original (non-continual) CGLM dataset [87, 114].

(5) The CLOC dataset [16]: CLOC is a big continual learning dataset on images with distribution
shift.Modyn supports the version processed by Hammoud et al. [35].
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While such data often is business-critical, to facilitate future research, we call for more datasets
with distribution shift to be released. Releasing such datasets can help research to solve meaningful
problems for practice.Modyn comes with tooling for analyzing pipelines. It provides an interactive
dashboard based on Dash/Plotly that allows users to (a) analyze single pipelines, i.e., dive into the
model and system metrics, and (b) compare pipelines to understand which policies perform best.
Most plots in this paper have first been explored using this dashboard.

7 EVALUATION
We evaluate Modyn to answer the following three questions:
(1) How do data selection policies influence accuracy?
(2) How do different triggering policies compare? In particular, can drift-based policies be used to

reduce pipeline cost while keeping accuracy?
(3) What is the impact ofModyn’s parallelism, partitioning, and prefetching optimizations and how

should the corresponding parameters be set to maximize throughput? How does the per-sample
data ingestion throughput compare to reading data sequentially from local storage?

For all experiments, we use a server with two 16 Core AMD EPYC 7313 CPUs, 256GB DRAM,
a 4 TiB Samsung MZQL23T8HCLS NVMe, and a NVIDIA RTX 3090 GPU. We use gRPC 1.64.1,
Postgres 15.2, PyTorch 2.2.1, NVIDIA GPU driver 545.23.06 with CUDA 12.3, on Ubuntu Server
22.04 with kernel 5.15. Modyn is compiled with GCC 12 and -O3 -march=native.

7.1 Data Selection
In this subsection, we explore the impact of data selection policies on pipeline accuracy. Each data
selection policy needs to define a window of data, a presampling, and a downsampling policy. We
pick the “finetuning” setting, i.e., we finetune the model from the previous trigger and set our
window to contain the data since the last trigger. We mostly focus on downsamplers (in BtS mode)
because they do not require domain-specific knowledge and are built for increasing accuracy on
the current distribution.
Due to space constraints, we consider the yearbook dataset [121] and the CGLM-landmark

dataset. We run all pipelines on three seeds and average the results. We shuffle the training data
and use the currently trained composite model. We test presampling uniform at random (uniform,
which samples a subset once and then trains on that for several epochs), class-balanced presampling,
RS2 with and without replacement [73], loss downsampling [47], DLIS downsampling [47], and
the margin, least conf., and entropy variants of uncertainty downsampling [22]. All policies are
implemented in less than 130 lines of code.

7.1.1 yearbook dataset. The yearbook dataset classifies school yearbook pictures from 1930 to
2013. We follow Yao et al. [121] and use their “yearbooknet” CNN and the training hyperparameters
with a batch size of 64, SGD with a learning rate of 0.001, and momentum 0.9. We also use their
evaluation split. We trigger yearly, i.e., with the highest resolution possible for this dataset, train
for 5 epochs per trigger, and use two warmup triggers where we do not apply data selection. Due to
the small dataset size (33 431 training samples), we use a three year sliding window as an interval
generation function (Section 3) to smoothen the accuracy curve and only run 50 % subset selection.
Full data training. In Figure 7, we show the accuracy matrix 𝑚𝜎,𝑃 of full data training on

yearbook that we seamlessly obtain usingModyn’s evaluation support. In the 1970s, we observe a
drop in accuracy for models trained on data before this period, in-line with numbers from Yao et
al. [121] (Figure 4a), indicating distribution shift. We hypothesize that, e.g., changing hairstyles
over the decades could cause the shift. As expected, the highest accuracies lie on the diagonal of
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Fig. 7. Accuracy matrix for yearbook full data training.

the matrix, and we can that see the first models underfit. The low accuracies in the upper left area
show how models trained on newer data forget the past distribution.
50% subset training. Figure 8 shows composite model accuracies per selection strategy in a

boxplot. Generally, the uncertainty based downsamplers [22] perform best. Full data training has
an average accuracy (pipeline score Σ𝜎,𝑃 ) of 92.3 %, and with 50 % selection, entropy reaches 91.4 %,
and least conf. and margin reach 91.2 %. RS2 [73] reaches 88.8 % (w/o replacement)/88.4 % (w.
replacement). Loss and DLIS perform worse than uniform and class-bal. sampling on this dataset.
We investigate why the average accuracy is higher in Figure 9. DLIS’s performance degrades

during the drift period, while margin is able to handle the drift better, similar to full data training.
It is able to identify which data points are the most relevant during the shift. Overall, we find
that with uncertainty-based downsamplers we almost reach full-data model accuracy with a 50 %
training budget.

7.1.2 CGLM-landmark dataset. This dataset classifies pictures fromWikipedia into 6 404 landmark
classes. We follow Prabhu et al. [80] without filtering out uncleaned data, as downsampling might
help to recognize unclean data. Despite applying weaker filter criteria, we obtain 361 671 samples
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Fig. 8. Currently trained composite model accuracies for full data training and 50% data selection on

yearbook.
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Fig. 9. Composite model accuracy over time for DLIS, margin, and RS2 (w/o) on yearbook.

before splitting the evaluation set, while Prabhu et al. [80] claim to obtain 430 K/580 K images (they
mention both numbers). Since their data preprocessing is not public, we cannot investigate the
differences. Following Prabhu et al. [80], we train a ResNet50 [38] with pretrained weights from
ImageNet, and use SGD with a learning rate of 0.005 and momentum of 0.9. We use a batch size of
128 and train for 5 epochs per trigger. We trigger every year. Since the first years contain very little
data, we use 5 warmup triggers. We evaluate using one year tumbling windows, and report top-5
accuracy since this is a hard classification task with 6 404 classes. We filter out the years 2005, 2006,
and 2020 due to the low number of samples in the evaluation set.
Full data training. This dataset is a good example to showcase the difference between the

currently trained and currently active composite model (Section 3.1). As seen in Figure 10, which
shows the accuracy sequence Λ𝜎,𝑃 , the currently trained model has a much higher accuracy over
time, since due to its definition it connects the spikes instead of the point after the spike. The
currently trained numbers are in-line with the numbers by Prabhu et al. [80]. The reason why
the individual models have spikes is that many classes are mostly prevalent within a single year,
i.e., there is a concentration of classes on one particular year. We explain this with the nature
of the dataset: it is likely that landmark pages on Wikipedia get updated in batches, e.g., a user
updates pictures of the Big Ben in London in 2015, and then they are not updated for several years
again. Hence, models overfit to the current prevalent classes, forgetting about the old classes. In a
traditional continual learning setup, this might not get noticed. Full data training has an average
top-5 accuracy of 51.5 %.

50%, 25 %, and 12.5 % subsets. For training on 50 % subsets, we show the top-5 accuracies of the
composite models for the downsamplers in Figure 11. For this dataset with shifts in classes, margin
performs best (44 %), followed by DLIS (43.1 %) and RS2 (43 %). RS2, which simply goes through
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Fig. 10. Visualization of the currently trained vs. active composite model on CGLM-landmark. The grey

dashed lines are a subset of the models trained during the pipeline.
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Fig. 11. Composite model accuracies for full data training and 50% data selection on CGLM-landmark.

the dataset as much as possible under the given budget, performs better than more sophisticated
techniques like least conf. and entropy.
On this dataset, for 25 % subsets, DLIS performs best (33.7 %), followed by RS2 (33.6 %). margin

(32.6 %) performs worse than RS2. For 12.5 % subsets, uniform, RS2, and DLIS all reach around 23 %
top-5 accuracy.

7.1.3 Takeaways. For yearbook, where we have covariate shift, downsampling helps achieve near
full-data performance on a 50% budget. For CGLM-landmark, where we have prior-probability
shift, RS2, DLIS and margin work well. This is motivating since these cheap sampling strategies
do not require subject-specific knowledge. Future analyses might extend this to information
retention [80] or more expensive downsamplers like CRAIG [63].

7.2 Triggering Policies
We explore triggering policies for full data training on yearbook, using the setup from Section 7.1.
We also explore the Kaggle arXiv dataset to analyze a dataset with a different drift pattern and
modality (text). We use the number of triggers instead of wall-clock time as a cost metric since we
run the experiments on a shared machine. While all pipelines train on the same number of data
points, fewer triggers are desirable due to system overhead per trigger and because the underlying
assumption is that we cannot finetune on the fly due to costly deployment checks.
A plot of the cost-accuracy feasible set F (Section 3.1) for different triggering policies is shown

in Figure 12. We use the currently active model because the currently trained model strongly favors
fewer triggers: if we only trigger at the end, the model that has seen all data is by definition the
currently trained model for all evaluations and would have very high accuracy. To fairly compare
policies, we only consider the metrics after every pipeline triggered once since there is no active
model before the first trigger. Otherwise, the missing initial values would skew the average. In
general, the goal is to minimize the number of triggers while maximizing accuracy.
Time- and amount triggers. In Section 7.1, we trigger every year, which is the highest time

resolution for yearbook. Here, we explore triggering every 3 and 5 years, as well as every 500 and
1000 samples. Notably, triggering yearly is not optimal: Triggering every 3 years yields 26 instead
of 75 triggers4, but only a slightly lower average accuracy (92.8 % vs. 93.1 %). Triggering every 500
items performs similarly due to the even distribution of samples across years. When we trigger
every 5 years, the performance drops to 92.4 % accuracy.

4As mentioned, we only consider metrics after all pipelines triggered once. While the yearly trigger overall fires 84 times, it
fires 75 times after all triggers have fired once.
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Fig. 12. Feasible set of triggering polices on yearbook.

Performance-based triggers. These triggers fire when the model performance on a window
drops below a threshold. For the first 3 500 samples we warm up and trigger at minimum every
3 years. We use windows of size 250 and test thresholds of 80 %, 85 %, 90 %, and 95% accuracy.
Generally, higher thresholds result in more frequent triggers and improved performance. Interest-
ingly, the 80 % threshold performs better than 85 %. The 80 % threshold triggers slightly later, and
the resulting model has a better performance than the model from the earlier 85 % trigger. Both
models do not cross the threshold for some time, such that the overall average performance of
85 % is lower. If labels are available, performance-based triggers are a simple but well-performing
triggering mechanism.

Drift-based triggering. The previous triggers rely on prior knowledge: we configure amount-
and time triggers based on our experience on when drift occurs and how many samples there are.
They also assume a constant drift frequency. This does not reflect reality where trend seasonality
might be irregular [60]. Performance triggers require labels as well as expected model performance.
Drift-based policies do not require this prior knowledge, as they use information from the data itself.
We perform the same warm up as for performance triggers. We test MMD (using alibi-detect [109])
on embeddings without PCA, use threshold-based triggering, and sweep across detection intervals
(100, 250, 500), thresholds (0.05, 0.07, 0.09), and window sizes (1 day, 5 days) of which we show a
subset in Figure 12. We also test Modyn’s automatic threshold mechanism that triggers when the
drift score is in the top 5 % of the 15 previously observed scores (AutoDrift).
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Fig. 13. The drift MMD (250/0.05/1d) triggering policy on yearbook. The black boxes indicate when a model

is active, i.e., the time during which it would be used for inference.
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Fig. 14. Feasible set of triggering polices on Kaggle arXiV.

On yearbook, the drift policies trigger not as often. A detection interval of 250 samples, with a
threshold of 0.05 and 1 day window performs well, as it only triggers 8 times while still having
an average accuracy of 90.1 %. In Figure 13 we show how the policy navigates around the drift
area: consider the model trained up to 1954. Shortly before the model’s performance degrades
in the 1970s, a trigger is fired (end of black box) and the model up to 1968 is trained (finetuned
on the data seen since 1954). Note that the drift policy does not have information about future
model performance and just uses the information from the data itself to make these decisions. The
other configurations perform slightly worse as they are less sensitive. For example, increasing the
window to 5 days decreases the number of triggers to 3 with an accuracy of 88 %. A larger window
size smoothens the drift scores, as the new data needs to be significantly different from the data in
the larger window.

The AutoDrift policy performs well, as it triggers 14 times with an average accuracy of 92.7 %.
Importantly, this policy does not require information on the drift metric magnitude. It uses a simple
outlier detection mechanism, making drift detection more user-friendly. Overall, these results are
promising as the drift policies successfully navigate around yearbook’s drift area without using
prior information on the dataset.

Kaggle arXiv dataset. The task of this large (∼ 2M samples from 1990 to 2024) textual dataset
is to classify paper titles from arXiv into 172 categories. Textual data uses embeddings for drift
detection. The dataset has a different drift pattern, as performance slowly degrades over time. We
train a DistilBERT model [91] with AdamW, learning rate 0.00002, and 5 epochs per trigger. We
evaluate each pipeline using 6 month tumbling windows, and warm up the drift and performance
triggers for 20 k samples.
We show the cost-accuracy scatter in Figure 14. As more papers are submitted each year, the

data density increases, and amount triggers fire more frequently than time triggers on this dataset.
Performance-triggers strongly depend on the threshold, as the 75% threshold triggers 154 times
while 70 % triggers only 12 times. The drift trigger with a threshold of 0.0005 and 1 year windows
almost matches the 5 year trigger with 6 triggers and 70 % top-2 accuracy. AutoDrift again performs
well with 30 triggers and 73.8 % top-2 accuracy, without the need to configure performance- or drift
thresholds manually. Overall, for both yearbook and Kaggle arXiv, data-centric triggering can
reduce pipeline cost.

7.3 Training Throughput
In this experiment, we train a model and evaluate the training throughput for different parameters
to show how Modyn’s optimizations impact training throughput.
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Fig. 15. Throughput (x1000) for Criteo (Section 7.3.1). The first three rows show the results for partitions

with 100 k samples, and the last three rows for partitions with 2.5M samples. For each partition, we show

results for 1, 2, and 8 threads at storage.

Setup.We configure the Postgres storage instance to use 96 maximum parallel workers, with
2 maximum workers per gather. All components are deployed on the same machine, to avoid
measuring network bandwidth instead of Modyn throughput. We run all measurements three
times and report the average results.
Workloads. We consider two workloads. In the first workload, we train a DLRM recommen-

dation model [69] on the Criteo 1TB click stream dataset [23], which provides user data over
24 days, with roughly 180million samples per day. Given categorical and numerical features, the
task is to predict whether a user will click on a suggestion. We use this scenario because the
high number of samples with thousands of samples per file stress-tests Modyn’s data-retrieval
implementation, in comparison to simpler scenarios such as vision models. We use NVIDIA’s
DLRM implementation [72] and follow their “small” setup with a batch size of 65 536. At the
storage, we useModyn’s BinaryFileWrapper, i.e., the 160 B samples are stored in a fixed row size
binary file format, distributed across files containing ca. 180 000 samples each. The bytes parser
function at the trainer creates input tensors directly from a memoryview to avoid unnecessary
copies. The second workload trains a ResNet50 [38] on CGLM, as in Section 7.1.2. We useModyn’s
SingleSampleFileWrapper, i.e., each sample is stored in one JPEG file. The bytes parser function
converts the data to an RGB PIL.Image on which the dataset applies image augmentations (e.g.,
resize and crop) to generate a tensor.
Throughput measurement. The size of each partition, as discussed in Section 5.2, directly

dictates the total number of partitions within the trigger training set. Every worker gets an equal
share of each partition. Note that we do not synchronize CUDA after each batch, i.e., we allow
PyTorch to perform computation while the next batch is being fetched. We do not shuffle for this
benchmark. We measure the time from the start of the training loop to the last model update and
obtain the throughput by dividing the time by the total number of samples in the trigger.

7.3.1 Criteo Throughput. In Figure 15 we show the throughput of training in the Criteoworkload.
We test both a partition size of 100 k (≈ 1.53 batches per partition) and 2.5M samples (≈ 38.15
batches per partition). We first discuss the results for a single thread at the storage, i.e., the top row
per partition size.

Data loader workers. Using one data loader worker and no prefetching, there is no difference
between the small and big partitions. When enabling prefetching of one partition, i.e., loading the
next partition into a buffer before its batches are requested, the throughput increases by 1.89x and
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1.42x for small and large partitions, respectively. Note that prefetching a partition means that each
worker prefetches its share of a partition. The smaller partitions benefit more from prefetching.

Increasing the number of workers generally increases throughput. For example, for the large
partitions with one prefetched partition, using four workers improves throughput by 3.84x, using
eight workers by 7.34x, and using 16 workers by 1.11x, compared to a single worker. This increase
is explained by the ability to fetch the keys and data from selector and storage in parallel, and the
parallelization of the bytes-to-tensor transformation.

Notably, in contrast to the single worker scenario, the larger partition size has higher throughput
with multiple workers than the smaller partition size. For example, for 16 workers and with
prefetching one partition (16/1/1), the larger partition setting has 2.15x higher throughput than the
smaller partition setting. This is because for the small partitions and 16 workers, a partition does
not even cover 10 % of a batch. For larger partitions, the workers have ∼ 2.5 batches per partition,
which is sufficient to saturate the GPU. More workers favor larger partition sizes.

Additional prefetching. We can both prefetch more partitions and request more partitions
in parallel. For the single threaded storage and the smaller partitions, increasing the number of
prefetched partitions–while keeping one parallel request–increases throughput, especially for
higher number of workers (e.g. 4/6/1, 8/6/1). However, there are diminishing returns to increasing
the number of prefetch partitions. For example, for four workers, going from 1 (4/1/1) to 2 (4/2/1)
prefetched partitions increases throughput by 1.25x, but going from 2 (4/2/1) to 6 (4/6/1) only
increases throughput by 1.07x. As soon as we fill up the buffer faster than data is consumed, there
is no benefit from further prefetching data. When using more workers, the benefit of prefetching
more partitions is higher because fixed size partitions are distributed across all workers. Prefetching
one partition with four workers prefetches the same amount of samples as eight workers that
prefetch 2 partitions.
Using more parallel prefetch requests does not improve throughput. This is explained by the

fact thatModyn’s components have upper limits of load they can handle: Postgres has a maximum
number of worker threads, the number of gRPC worker threads is limited, and the disk holding the
databases and dataset has limited bandwidth. Many parallel requests overload the system.

Multi-threaded storage. The data retrieval at the storage can use multiple threads (Section 5.3.1).
We find that using 2 threads increases throughput, but using 8 threads overloads the system and may
lead to worse performance. The throughput increases are higher for smaller number of workers. For
example, for the setting of one worker and no prefetching (1/0/-), on the small partitions, parallelism
increases throughput by 1.29x and 1.57x for 2 and 8 threads, respectively. For 16 workers (16/0/-),
increasing the storage threads from 2 to 8 decreases performance to 0.58x.

The reason for the performance decrease with 8 threads is that, while we parallelize data retrieval,
there is a limit on the number of parallel Postgres workers. If 16 workers send a request that gets
split upon 8 threads, and each thread emits one query that executes with 2 workers in parallel, we
need 256 Postgres workers, amplified with increasing parallel prefetch requests. Nevertheless, in
the following, we show that we reach sufficiently high training throughput.

Comparison to local training. We compare Modyn to local training to quantify its overhead.
For this, we read data sequentially from 90 binary files containing 30M samples. Each dataloader
worker is assigned a share of the files. Note that this not only removes the communication and gRPC
overhead, but also removes the sample-level data selection. Modyn loads each sample individually
by key, but the local approach loads entire files sequentially and emits all samples in them.
The results are shown in Figure 16a. For each number of dataloader workers, we compare the

best throughput we measure for Figure 15 against the local throughput.Modyn reaches 98 %, 85.4 %,
77.8 %, and 71% of the optimal local performance for 1, 4, 8, and 16 workers. Despite having a
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Fig. 16. Modyn throughput vs. optimal throughput when loading data sequentially locally.

much more involved data retrieval process,Modyn reaches over 70 % of optimal throughput for
the challenging recommendation system case.

7.3.2 CGLM Throughput. Figure 16b comparesModyn to the optimal local throughput. As soon
as 4 workers are used, the throughput stagnates at around 475 samples/s. Modyn basically reaches
the optimal local throughput for all configurations. This is because computer vision workloads
like CGLM (or yearbook) are compute-bound, while training a recommendation systems model is
memory-bound [1, 21, 66, 124]. Four workers, with Modyn’s C++ storage and selector implementa-
tions, supply the model with enough data.

8 CONCLUSION AND FUTUREWORK
We present the data-centricModyn orchestrator for ML pipelines on growing datasets, together
with an ecosystem of tooling, benchmarks, and concepts to fairly compare ML pipelines. Modyn
implements various triggering and data selection policies and optimizes the system infrastructure
under the hood for high-throughput sample-level data selection. For future work from an ML
perspective, it is interesting to extend our analyses across more benchmark datasets, explore
more presampling policies, and consider metrics such as information retention [16, 80]. Future
work might also use Modyn and the ideas on comparing pipelines (Section 3) to find optimal
pipeline configurations on benchmarks with an AutoML approach [40, 89], and extend Modyn
to the unsupervised case and train generative large language models [111]. Due to the right to
data deletion in regulations such as GDPR and CCPA [29, 100], support for data deletion (dynamic
instead of just growing datasets) also is an interesting feature [15, 112].
From a systems and database perspective, additional research opportunities arise. For example,

some selection policies require to store huge embeddings over time [82] which is a data management
challenge in itself. It is also not yet clear how to optimally compress and store multiple model
versions over time [103, 104]. Last, since Modyn is a centralized system, it can be leveraged
for provenance analyses, such as understanding why retraining and selection decisions were
made [19, 68, 77, 118]. Modyn provides a rich environment for such research on different parts of
the training pipeline.
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